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On Replacement Models Via A Fuzzy Set Theoretic
Framework
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Abstract| Uncertainty is present in virtually all replace-
ment decisions due to unknown future events, such as rev-
enue streams, maintenance costs, and in°ation. Fuzzy sets
provide a mathematical framework for explicitly incorporat-
ing imprecision into the decision making model, especially
when the system involves human subjectivity. This paper
illustrates the use of fuzzy sets and possibility theory to ex-
plicitly model uncertainty in replacement decisions via fuzzy
variables and fuzzy numbers. In particular, a fuzzy set ap-
proach to economic life of an asset calculation as well as a ¯-
nite horizon single asset replacement problem with multiple
challengers is discussed. Because the use of triangular fuzzy
numbers provides a compromise between computational ef-
¯ciency and realistic modeling of the uncertainty, this dis-
cussion emphasizes fuzzy numbers. The algorithms used to
determine the optimal replacement policy incorporate fuzzy
arithmetic, dynamic programming with fuzzy rewards, the
vertex method, and various ranking methods for fuzzy num-
bers. A brief history of replacement analysis, current con-
ventional techniques, the basic concepts of fuzzy sets and
possibility theory, and the advantages of the fuzzy general-
ization are also discussed.

Keywords| Replacement analysis, fuzzy sets, possibility
theory, fuzzy numbers, decision making under uncertainty.

I. Economic Decision Analysis

Economic decision analysis is a useful tool, o®ering in-
dividuals and organizations the techniques to model eco-
nomic decision making problems, such as maintenance and
replacement decisions, and determine an optimal decision.
However, the accuracy of the model determines the validity
of the conclusion. In many cases, the assumption of cer-
tainty in many models is made not so much for validity but
the need to obtain simpler and more readily solvable for-
mulations. Essentially, the tradeo® is between an inaccu-
rate but solvable model and a more accurate but potentially
unsolvable one. In most real-world systems, however, there
are elements of uncertainty in the process or its parameters,
which may lack precise de¯nition or precise measurement,
especially when the system involves human subjectivity.

When developing a model of a system with uncertainty,
the decision maker can either ignore the uncertainty, im-
plicitly acknowledge it, or explicitly model it. Ignoring the
uncertainty usually results in a deterministic model of the
process with precise values for all parameters. Implicitly
acknowledging the uncertainty may still result in a deter-
ministic model in which sensitivity analysis or discount fac-
tors can be used to get an idea of how this uncertainty
a®ects the outcome. Lastly, the decision maker can explic-
itly model the uncertainty using speci¯c paradigms such as
interval analysis, possibility theory, probability theory, or
evidence theory [3].

The proper paradigm depends on the nature of the un-
certainty. When the probabilities are speci¯ed for the out-

comes, then the theory of Von Neumann and Morgenstern
[40] provides the tools necessary to determine the optimal
decision. However, in many cases these probabilities are
neither de¯ned nor directly attainable. Under these cir-
cumstances, other theories are needed. The most common
choice is the use of subjective probability distributions and
the theory of choice due to Savage [34]. However, consid-
erable debate on the use of subjective probabilities exists
and is well documented in the literature [6], [16], [23], [25],
[27]. From a psychological standpoint, the methods used
to elicit these subjective probabilities and the validity of
the subjective probabilities themselves have been the fo-
cus of research led by Tversky and Kahneman [37], [39],
[38]. Their studies show that the heuristics employed to
assess probabilities and predict values can sometimes lead
to \severe and systematic errors" [38].

Because humans do not think naturally in probabilistic
terms, they tend to ¯nd the notions of fuzzy sets and their
linguistic based approaches more user-friendly and appeal-
ing. We may view fuzzy set theory as a generalization of
classical set theory since it provides us with a mathematical
tool for describing sets that have no sharp transition from
membership to nonmembership. Membership in a fuzzy
set is de¯ned by a generalized version of the classical in-
dicator function called a membership function. Fuzzy sets
allow the de¯nition of vague or imprecise concepts such
as \approximately 1000" where, for example, 1000 would
have a membership of 1.0 and 975 a membership of 0.5
(see Figure 1). This theory has been developed and suc-
cessfully applied to numerous areas such as control and
decision making, engineering, and medicine. Its applica-
tion to economic analysis is natural due to the uncertainty
inherent in many ¯nancial and investment decisions. As
noted earlier, it provides a precise mathematical language
to model uncertainty due to vagueness and imprecision in
events or statements describing a system. More informa-
tion on fuzzy set theory, particularly fundamental concepts
such as fuzzy numbers which are invoked in our presenta-
tion, is included in the Appendix.

II. Replacement Analysis

One of the most practical and topical areas of engineering
economics is replacement analysis. Mathematical models
and analysis methods are used to determine the sequence
of replacement decisions that provides a required service
for a speci¯ed time horizon in an optimal manner. It is
assumed that maintenance and replacement decisions oc-
cur on a periodic basis. The decision maker chooses from
various options, such as to keep, overhaul, or perform pre-
ventive maintenance on the existing asset or replace it with
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a new/used asset. Any sequence of decisions is called a
replacement policy and any sequence that optimizes some
performance measure such as net present value or annual
equivalent cost is an optimal replacement policy.

In replacement analysis the economic life of an asset de-
termines the replacement cycle that gives the minimum
annual equivalent cost (MAEC) of operating a single asset
over an in¯nite horizon [35]. Dynamic programming (DP),
with discounting to put more emphasis on short-term in-
come, is an acknowledged tool for the determination of the
optimal replacement policy for more general replacement
models [18]. Using the DP approach some of the restric-
tive assumptions of the economic life method can be re-
laxed and still produce a computationally feasible solution
algorithm. Early pioneers in the use of dynamic program-
ming for ¯nite horizon equipment replacement problems
were Bellman and Wagner. Bellman [4], [5] was the ¯rst
to formulate the replacement problem as a dynamic pro-
gram. Optimal replacement policies were proposed ¯rst
for the case with no technological change and the other
assuming technological improvement. Bellman formulated
a discounted DP version of the economic life of an asset
model and determined analytically the optimal age T to
replace the asset. In the more challenging technological
improvement version, the revenue, the upkeep costs, and
the replacement costs are assumed to be functions of the
date the asset is installed as well as its age with respect to
installation. Wagner [41] formulated the replacement prob-
lem as a network and solved for the shortest path, which
corresponded to the minimum outlay. Terborgh [36] in-
cluded linear obsolescence in his formulation while Alchian
[1] allowed operating revenues and operating costs to in-
crease linearly with time. Oakford [30] modeled increas-
ing revenues and data. Dreyfus [13] modeled technologi-
cal change in revenue, maintenance, and replacement costs
using bounded exponential functions. The Dynamic Re-
placement Economy Decision Model (DREDM) developed
in [31] is a generalization of Wagner's dynamic program-
ming model that allows for multiple challengers and time-
varying parameters.

Replacement models of great interest and relevance to
this research are those that model uncertainty. Dreyfus
and Law [13] treat the replacement problem where deter-
minism yields to stochasticity. Their model includes the
probability of a catastrophic failure in the asset being used
as well as an uncertain net operating cost that is modeled
by another probability distribution. The DP algorithm de-
termines the minimum expected cost for the process. The
Stochastic Replacement Economy Decision Model (SRE)
presented by Lohmann [29] is a stochastic generalization
of the DREDM. The assumption that the cash °ows and
relationships are known with certainty was relaxed and the
component cash °ows are modeled as triangular probabil-
ity distributions based on the decision maker's subjective
judgment. The solution for this model is generated through
Monte-Carlo simulation, which determines the probability
that each asset is the optimal choice at time 0 as well as the
probability distribution of the optimal net present value of

the policy.
A tacit assumption implicit in the foregoing models is

that uncertainty in the replacement decision can be fully
modeled either deterministically or stochastically. This is
not, however, always the case. Limiting replacement mod-
els to these two approaches either ignores the uncertainty or
assumes that all uncertainty is probabilistic in nature and
that the probabilistic information is fully known. Categor-
ically classifying all uncertainty as randomness may not be
reasonable or adequate.

In recent times the debate concerning the use of non-
probabilistic uncertainty, and speci¯cally fuzzy sets, has
surfaced in the area of economic analysis [3], [8], [9], [10],
[11], [19], [20], [42]. The replacement decisions made at
each time period are based not only on the current cash
°ows but also projected future cash °ows of all possible
assets [29]. Therefore, uncertainty in these cash °ows can
have a pronounced e®ect on the optimal replacement policy.
A fuzzy set theoretic approach, as described in the sequel,
may lead to more informed replacement decisions when the
assumptions for a probabilistic approach are not met. For
the deterministic case, a fuzzy set theoretic approach us-
ing fuzzy numbers is equivalent to multivariable sensitivity
analysis and immediately provides both the deterministic
optimal value and the possible range due to uncertainty.

III. Fuzzy Concepts in Cash Flow Analysis

Cash °ows, the basic variable in replacement decisions,
are used by managers and ¯nancial analysts to measure the
streams of money going into and °owing out of a particular
organization's operation [35]. Traditionally, cash °ows are
treated as either deterministic or stochastic. However, as
shown in simulation studies [32], uncertain information in
estimating these cash °ows can limit the value of the analy-
sis. Errors in deterministic cash °ow estimations can skew
the results of the analysis. Similarly, the use of subjective
probability distributions is of concern since they generally
cannot be veri¯ed, and the required historical information
for generating frequency-based probability distributions is
not always available.

The fundamental types of uncertainty, nonspeci¯city,
fuzziness, and strife, are examined by Klir and Yuan in [24].
Uncertainty occurs in replacement and maintenance deci-
sions in various ways. Of particular interest are nonspeci-
¯city and fuzziness which may factor into the estimates of
the aggregate cash °ows, the purchase prices/salvage val-
ues, the minimum attractive rate of return (MARR), or
the physical lifetimes of the assets. This is especially true
when these variables are based on the estimates provided
by experts via the use of such natural language statements
as \approximately $1000". Using fuzzy variables one can
represent this vagueness and imprecision. In this presen-
tation, however, these vague quantities will be represented
using triangular fuzzy numbers (TFNs).

Several basic concepts of fuzzy sets applicable to the fore-
going forms of uncertainty are fuzzy sets, ®-level sets , con-
vexity , and triangular fuzzy numbers. For completeness,
these de¯nitions and the foundations of fuzzy numbers and
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possibility theory are brie°y reviewed in the Appendix.
The reader is referred to [45], [46] for a more complete
review. Fuzzy numbers are fuzzy sets de¯ned on the set
of real numbers, generally used to represent vague expres-
sions, such as\about 20" or \approximately 1000", used of-
ten in the description of uncertain economic decision sys-
tems. Triangular fuzzy numbers are a special type fuzzy
number which simplify the arithmetic operations consider-
ably and are used in the models developed in this research.
Figure 1 is a triangular fuzzy number representation of the
expression \approximately 1000." A triangular fuzzy num-

Fig. 1. TFN representing the expression \approximately 1000."

ber (TFN) is a fuzzy number ~MT = [l;m; r] with the mem-
bership function

¹ ~MT
=

8
<
:

(1=(m¡ l)) (x¡ l) ; for x 2 (l;m]
(1=(r ¡m)) (r ¡ x) ; for x 2 (m; r)

0; otherwise
(1)

A. Nonprobabilistic Methods in Cash Flow Analysis

Research into fuzzy versions of cash °ows began with
Ward [42], de¯ning them as trapezoidal fuzzy numbers and
solving a fuzzy present worth problem. Buckley [8] used
fuzzy numbers to develop fuzzy net present value (FPV)
and fuzzy net future value (FFV) with fuzzy interest rates
over a period of n years where n may also be fuzzy set.
Buckley developed fuzzy equivalents to continuous interest
payments, the e®ective rate of interest, and regular annu-
ities as well. Restricting the fuzzy cash °ows to positive
fuzzy numbers allows the multiplication operation to be
distributive over addition. The fuzzy number of time peri-
ods produces nonlinearities that make computations more
complex. Li Calzi [28] provided an axiomatic development
for the fuzzy extension of ¯nancial mathematics with a de-
sire to maintain consistency in the calculations. He exam-
ined two classes of fuzzy quantities, compact fuzzy intervals
and invertible fuzzy intervals, and proved general theorems
regarding consistency.

Two of the most recent and practical applications of non-
probabilistic uncertainty to economic analysis are given in
[10], [11]. Choobineh and Behrens [11] call attention to the

use of intervals and possibility theory in economic analysis.
The weak distributivity of interval arithmetic is noted, but
a technique called the vertex method [12] is utilized to by-
pass this problem in interval and fuzzy arithmetic. Their
approach to modeling cash °ows as fuzzy intervals is sim-
ilar to Ward's. Chiu and Park [10] use fuzzy numbers in
cash °ow analysis and provide a good survey of the ma-
jor methods for ranking mutually exclusive fuzzy projects.
The cash °ows are modeled as triangular fuzzy numbers
and the linear approximation to the product of two trian-
gular fuzzy numbers is investigated. The present worth of a
fuzzy project is also examined. Their resultant formulation
of a fuzzy present worth is

PW =

nX

t=0

(
PtQt

s=0(1 +Rs)

)
(2)

where Pt is a positive or negative TFN representing the
cash °ow at the end of time t, n is the number of evaluation
periods, and Rs is the nonnegative TFN representing the
discount rate at the end of time s. Extending these ideas
to replacement analysis, Hearnes [20] formulated fuzzy ver-
sions of the economic life of an asset model and the ¯nite
single asset replacement problem. This work is used as a
point of departure for the discussions that follow.

B. Fuzzy Arithmetic and Interval Analysis

Fuzzy numbers represent vague notions of precise quan-
tities. It is essential to be able to perform algebraic op-
erations on them. Fuzzy arithmetic is based on the ex-
tension principle introduced by Zadeh in 1975 [44]. The
arithmetic operations of addition, subtraction, multiplica-
tion, and division developed in [14] and [15] are particularly
useful when modeling and analyzing cash °ows. The alge-
braic operations for TFNs are speci¯cally reviewed. The
choice of TFNs is in part due to their simpli¯ed algebraic
operations. However, he set of TFNs is not closed under
the operations of multiplication and division. The e®ect
of using a linear (TFN) approximation, which is studied
thoroughly in [22], is not signi¯cant. The TFN approxima-
tion to the multiplication operation is used in the following
models for computational simplicity.

Fuzzy numbers are a family of nested intervals [11] which
correspond to levels of \con¯dence" by the decision maker
and therefore are closely related to interval analysis. How-
ever, like interval arithmetic, the multiplication operation
for fuzzy numbers is only weakly distributive over addition.
This presents a problem when modeling with fuzzy num-
bers since the outcome can depend on the form of the equa-
tion used. There are some special cases, however, where
the multiplication operation is distributive over addition.
If ~M1; ~M2; ~M3 are fuzzy numbers, the multiplication oper-
ation is distributive over addition (i.e., ~M1 ¢ ( ~M2 + ~M3) =
~M1 ¢ ~M2 + ~M1 ¢ ~M3) when [15]:

1. ~M1 is a real number|i.e., scalar multiplication is dis-
tributive over addition.

2. ~M2 and ~M3 are both positive or both negative.
3. ~M2 = ¡ ~M2 and ~M3 = ¡ ~M3.
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When conditions (1) { (3) are not met, a procedure called
the vertex method [12] preserves the distributivity of mul-
tiplication over addition. The price, however, is an expo-
nential increase in the number of computations.

C. Some Sources of Uncertainty in Replacement Analysis

Several aspects of replacement analysis contain impre-
cision and vagueness that warrant further discussion. We
postulate that some of these variables, such as the physi-
cal lifetime of an asset, aggregate cash °ow estimates, and
the MARR, signi¯cantly impact the optimal replacement
policy.

The physical lifetime of some assets may not be known
with certainty, yet this is tacitly assumed and treated as de-
terministic in many models. In some situations, if enough
information is known, then it is appropriate to treat it
probabilistically. However, in cases where the asset is a
new technology or a new model, this information is not gen-
erally available and such an approach must be considered
suspect. In this case, it is instructive to treat the uncer-
tainty in this variable through the use of fuzzy DP models
but particularly those that allow stochastic or fuzzy termi-
nation times [8], [21]. For example, for an older asset the
historical information about failures may be known and a
probability distribution for failure can be derived. How-
ever, for an asset with new technology estimate of physical
lifetime may be a fuzzy set such as \about 5 years" or \more
or less 10 years". In each of these cases, the decision space
has an uncertain boundary that a®ects the overall decision
policy. Stochastic and fuzzy DP [17] provide methods for
dealing with this type of uncertainty. Similarly, there may
be uncertainty in the actual horizon N of the project which
may be either stochastic or fuzzy. For example, the project
duration of asset life may be determined if the state of the
asset reaches some imprecisely de¯nable point.

Another source of uncertainty in replacement and main-
tenance decisions is the estimation of the aggregate cash
°ow for each time period. In previous models, aggregate
cash °ows were treated as either deterministic or stochastic
variables, but errors in these can lead to skewed analysis
[32]. Subjective probability distributions generally cannot
be veri¯ed, while the required historical information for
generating frequency-based probability distributions is not
generally available. In these cases, it may be more ap-
propriate to de¯ne the aggregate cash °ows as possibility
distributions based on a decision maker's opinion or expert
judgment.

The minimum attractive rate of return (MARR), which
is usually used for project evaluation and comparison, is
also another variable which may realistically possess forms
of uncertainty [35]. However, in classical approaches this
either is not addressed or is erroneously assumed to be well
known or deterministic. The selection of the proper MARR
plays an important role in the outcome of the maintenance
and replacement decisions. There are a number of ways to
determine a corporation's MARR, such as the use of the
Delphi method involving its directors or some chosen math-
ematical formula. However, the MARR can be investment

or management dependent. Because of the uncertainties
characteristic of investment and management decision pro-
cesses, it is inevitable that any MARR thus determined is
imprecise or fraught with uncertainties. Variation in the
MARR and its e®ect on the optimal policy are vital pieces
of information to decision makers. These may be better
modeled as a fuzzy variable or fuzzy number.

A number of engineering economic studies discuss the
incorporation of in°ation and in°ation rate in their models.
It is tacitly assumed or conceded that the measurement of
this variable is precise. This, however, is not the case. We
know that there is a considerable degree of uncertainty due
to the way that it is measured. For example, the Consumer
Price Index presently used by the government of the United
States of America is now under review due to the concern
expressed by certain economists that the \basket" of goods
and services it uses may not accurately re°ect the true
in°ation (see, for example, [33]). The lack of speci¯city
or precision involved in the measurement of the in°ation
rate may necessitate the injection of fuzzy modeling such
as the use of fuzzy numbers to represent it.

IV. Economic Life of an Asset Model

In some replacement decisions, an asset is required for a
long period of time. In these cases an in¯nite horizon can
be assumed and the decision variable becomes the life of the
asset, commonly called the economic life of an asset. The
chosen replacement cycle is the cycle corresponding to the
minimum annual equivalent (AE) cost of owning and oper-
ating the asset [35]. An in¯nite sequence of replacements
and stationary cash °ows (with respect to installation time)
is assumed.

The general deterministic n-period replacement cycle
gives the following AE cost:

AEn(i) = (P ¡ Sn)(A=P; i; n) + Sni
+(A=P; i; n)

Pn
n0=1 (Cn0(P=F; i; n

0))
(3)

where

i ´ minimum attractive rate of
return (MARR)

P ´ initial purchase price
Sn ´ salvage value at end of period n
Cn0 ´ aggregate cash out°ow at end of

period n0

(A=P; i; n) ´ capital recovery factor
(P=F; i; n) ´ present worth factor

Two signi¯cant factors determining the optimal replace-
ment cycle are the aggregate cash °ows at each time pe-
riod and the MARR. The MARR is set by the organiza-
tion and is considered a crisp (deterministic) number in
the model. The future aggregate cash °ows and salvage
values, however, are a source of considerable uncertainty
and are modeled as triangular fuzzy numbers. These pa-
rameters are represented as fuzzy versions of their original
counterparts by ~Cn0 and ~Sn, respectively. The decision
maker determines a best, worst, and most likely estimate
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for each. This method of elicitation is quick and has been
used previously in replacement analysis [29].

Generalizing to consider fuzzy cash °ows and salvage val-
ues, one obtains the Possibilistic Economic Life of an Asset
Model (PELAM) [20]. The fuzzy economic life of an asset
is de¯ned as the replacement cycle, n, corresponding to the
minimum fuzzy AE (FAE) of all possible replacement cy-
cles. The traditional model in Equation 3 is manipulated
into a proper representation|i.e., all fuzzy numbers appear
only once in the equation:

FAEn(i) = P (A=P; i; n) + ~Sn (i¡ (A=P; i; n))

+(A=P; i; n)
Pn

n0=1

³
~Cn0(P=F; i; n

0)
´

(4)

where

~Sn ´ TFN representing the \salvage value at
end of period n"

~Cn0 ´ TFN representing the \aggregate cash
°ow at end of period n0"

The operations used in PELAM are scalar multiplication,
addition, and subtraction. Therefore, the use of TFNs to
model the cash °ows gives TFNs as a result. However, if the
MARR is also modeled as a fuzzy number the result is not
a TFN and the linear approximation to TFN multiplication
and the vertex method must be used.

An Example Problem

An asset to perform service A is required by XYZ Cor-
poration inde¯nitely. Asset B can be purchased for $50
(all dollar amounts are in thousands) and has a physical
life of 5 years. The aggregate cash °ows (operating costs -
operating revenues) for each year of the life of asset B are
$3, $4, $6, $10, and $12, respectively, for n = 1; : : : ; 5. If
the asset is sold at the end of the year, its salvage value is
$35, $30, $27, $23, and $20, respectively, for n = 1; : : : ; 5.
Assume a MARR of 10%. Determine the economic life of
Asset B.

The assumption of certainty in future cash °ows is unre-
alistic, except in some cases such as when the asset is cov-
ered by a service contract. Likewise, future salvage values
are dependent on the state of the equipment at that time,
possible technological breakthroughs that have occurred,
and numerous other uncertain events. The deterministic
data is treated as the \most likely" estimates. The local
expert or decision maker provides additional information,
namely the \best" and \worst" estimates:

Being pessimistic, the decision maker believes that the
cash °ows (operating costs - revenues) might be much
higher than the \most likely" estimates, and the salvage
values might be much lower. Therefore the high estimates
for the cash °ows are $5, $7, $10, $15, and $18, respec-
tively, for n = 1; : : : ; 5. The low estimates remain near the
\most likely" estimates|$2, $3, $5, $8, and $10. The sal-
vage values high estimates are $38, $32, $29, $27, and $25.
The low estimates are $32, $24, $21, $18, and $15.

Table I gives the FAE costs for each replacement cycle,
n = 1; : : : ; 5 while Figure 2 gives a graphical representation.
Of these, the \minimum" must be chosen. Comparing al-

Fig. 2. TFNs representing the annual equivalent costs for the ¯ve
possible replacement cycles for the example problem.

ternatives described by fuzzy numbers requires a ranking
method. All ranking methods reported in the literature
su®er from some pathological examples where the result is
counterintuitive [7], [10]. The rankings of selected meth-
ods are given in Table II below. Note that the rankings
are not all in agreement as shown in Table II. However,
several of them do agree with each other (Chiu and Park,
Choobineh and Behrens, and Kaufmann and Gupta). All
three of these methods use a ranking function based on the
l, m, and r values of the TFN. In the remainder of this
paper, the Kaufmann and Gupta method is used as the
preferred ranking function.

Replacement Fuzzy AE Cost
Cycle (Years) of Replacement Cycle

1 [19:00; 23:00; 28:00]
2 [16:05; 18:00; 23:33]
3 [14:58; 16:19; 20:94]
4 [14:22; 16:30; 20:75]
5 [14:30; 16:46; 21:09]

TABLE I

Results of PELAM for Example Problem.

The Kaufmann and Gupta method is a hierarchical test.
It can be described as follows: Let ~M1 = [l1;m1; r1] and
~M2 = [l2;m2; r2] be two di®erent TFNs.

TEST 1: Compare the ordinary numbers :
² IF (l1 +2m1 + r1) < (l2 +2m2 + r2) THEN ~M1 < ~M2

² ELSE IF (l1 + 2m1 + r1) > (l2 + 2m2 + r2) THEN
~M1 > ~M2

² ELSE go to TEST 2.
TEST 2: Compare the modal values:
² IF m1 < m2 THEN ~M1 < ~M2

² ELSE IF m1 > m2 THEN ~M1 > ~M2

² ELSE go to TEST 3.
TEST 3: Compare the divergence:
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Ranking Method with Ranking

Adamo, ® = 0:9
FAE3 » FAE4 » FAE5 < FAE2 < FAE1

Chang
FAE3 < FAE4 < FAE5 < FAE2 < FAE1

Chiu and Park, w = 0:3
FAE4 < FAE3 < FAE5 < FAE2 < FAE1

Choobineh and Behrens
FAE4 < FAE3 < FAE5 < FAE2 < FAE1

Kaufmann and Gupta
FAE4 < FAE3 < FAE5 < FAE2 < FAE1

Traditional model
AE3 < AE4 < AE5 < AE2 < AE1

TABLE II

Ranking of FAE Costs in Example Problem by Various

Methods.

² IF (r1 ¡ l1) < (r2 ¡ l2) THEN ~M1 < ~M2

² ELSE ~M1 > ~M2.
This method is usually used because (1) it is relatively

easy to compute and (2) it always chooses a maximum
when the two TFNs are not equal. The latter property
is especially important in models based on dynamic pro-
gramming where a unique optimal value at each stage is
desired.

The Optimal Replacement Cycle for the Example Problem

We now show the determination of the optimal replace-
ment policy for the example problem. Using the Kaufmann
and Gupta ranking method for reasons discussed above,
the optimal replacement cycle for Asset B is 4 years with
a fuzzy annual equivalent cost of [14:22; 16:30; 20:75]. The
modal values of the TFNs for each replacement cycle cor-
respond to the deterministic AE costs from the traditional
economic life of an asset model. Therefore, the traditional
optimal replacement cycle is immediately available from
the fuzzy solution, and the fuzzy solution using fuzzy num-
bers is equivalent to performing sensitivity analysis on all
uncertain variables. It is also interesting to note that us-
ing the traditional model the optimal replacement cycle is
3 years, which is di®erent from the 4 years determined by
PELAM. Additionally, PELAM determines the optimal re-
placement cycle based on the decision maker's estimates of
the uncertainty and therefore provides a more informative
answer than the traditional model.

V. General Single Asset Replacement

When a service is required for only a ¯nite period or
the aggregate cash °ows are nonstationary with respect to
installation time, a more general approach than PELAM
is needed. The general single asset replacement problem is
widely studied in the literature [2], [13], [29], [31]. It may
be de¯ned as follows:

an ´ asset in use at time period n
N ´ number of time periods that service

is required
An ´ number of challenging assets at time

period n

The time periods n = 0; 1; : : : ;N represent the periodic
replacement decisions. If N is ¯nite then the problem is
a ¯nite horizon replacement problem, and if N is in¯nite
then the problem is an in¯nite horizon problem. The exist-
ing asset is known as the defender and can only be placed
into service at period 0. The A0 assets available for re-
placement at time 0 are known as current challengers , and
the An assets available at future periods are known as fu-
ture challengers . For each period n in the lifetime of each
asset, there are three component cash °ows describing the
installation cost and/or salvage value, operating costs, and
operating revenues at period n. The component cash °ows
of the future challengers are related to the corresponding
component cash °ow of a current challenger by a scalar
function f(a; n; C) where n is the time period in which as-
set a is installed and C 2 1; 2; 3 represents the respective
component cash °ow. This function allows for the modeling
of in°ation, technological improvements, and other time-
dependent e®ects on cash °ows. For example, to model a
crisp 3% in°ation rate, then f(a; n; C) ´ 1:03n for all a; C.
Other more complicated variations can be de¯ned to model
a wide range of factors. The component cash °ows and rela-
tion functions are either known with certainty or estimated
by the decision maker and may also be a fuzzy variable.
The NPV of any sequence of cash °ows fF0; F1; : : : ; FNg
received at time periods 0; 1; : : : ; n with respect to MARR
i is

NX

n=0

Fj
(1 + i)n

: (5)

The problem is to ¯nd the sequence(s) of keep/replace de-
cisions that maximizes NPVi, the net present value given
some MARR i.

The Possibilistic Model for Single Asset Replacement via
dynamic programming (PMSAR) [20] is a generalization of
SREDM in [31] to allow for fuzzy parameters such as aggre-
gate cash °ows, in°ation, or technological change. SREDM
used the \best", \worst", and \most likely" estimates of the
parameters, as in PERT analysis, to create triangular prob-
ability distributions. Using those probability distributions,
Monte-Carlo simulation provided estimates of the proba-
bility of each asset being the optimal choice at period 0.
Under such conditions of estimating the distributions, it is
arguable that a possibility theory approach is more appro-
priate. Like PELAM, PMSAR uses TFNs for cash °ows.
However, there is also the possibility of having uncertainty
in technological improvements, in°ation, or other aspects
of the future challengers, and this is modeled as a TFN
through a relation function f . The solution technique is
a forward dynamic program that uses the Kaufmann and
Gupta ranking method to determine the optimal decision
and functional equation value at each time period. The
problem is to ¯nd the sequence(s) of keep/replace deci-
sions that maximizes FPVi, the fuzzy net present value
given some MARR i.

We now present a fuzzy analog of the SREDM model.
For ease of exposition, we de¯ne the following variables of
the model:
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1. Let k be the state of the system, k = 1; 2; : : : ; N ,
which represents the number of periods of required
service.

2. There are two decision variables: (1) n, the period to
place an asset into service and (2) a, the asset to place
into service.

3. The immediate reward ri(a; n; k) is the FPVi gener-
ated by placing asset a into service at period n and
keeping it in service until period k.

4. The transition function ¿ (a; n; k) for placing asset a
into service at time n for the remaining k ¡ n time
periods is ¿ (a; n; k) = n.

We de¯ne the function FPVi(a; n; C; k) as the fuzzy net
present value with respect to MARR i of the installation
cost and/or salvage value, operating revenues, and operat-
ing costs for C = 1; 2; 3, respectively, of placing asset a into
service at period n for the remaining k ¡ n time periods.
Collectively, the aggregate fuzzy net present value for all
three component cash °ows is

FPVi(a; n; k) =

3X

C=1

FPVi(a; n; C; k): (6)

Furthermore, de¯ne the functional FPV ?i (k) for this pro-
cess as the value obtained using an optimal replacement
policy from state 0 to state k. Invoking Bellman's Principle
of Optimality results in the following functional equation
of a forward dynamic program:

FPV ?i (k) = max
n;a
fri(a; n; k) + FPV ?i (n)g (7)

where

n 2 f0; 1; : : : ; k ¡ 1g (8)

and

a 2
½
f0; 1; : : : ; A0g if n = 0
f1; 2; : : : ; Ang if n > 0

(9)

A boundary condition of FPV ?i (0) = [0; 0; 0] is assigned.
The max operation is performed through the Kaufmann
and Gupta ranking method on TFNs. De¯ning La as the
physical lifetime, in time periods, of asset a gives:

r(a; n; k) =

½
FPVi(a; n; k) if k ¡ n · La
¡M otherwise

(10)

where M À 0 is some su±ciently large number.

Relating the parameters of future challengers to the pa-
rameters of current challengers via a fuzzy relation func-
tion f(a; n; C) is a desirable feature since there may exist
considerable uncertainty of the nonprobabilistic nature in
future events. This addition is not without its price, how-
ever. The model requires multiplication of two fuzzy num-
bers, which is only weakly distributive and is not closed
over TFNs. This problem may be readily circumvented
by the adroit use of the vertex method [12] and a TFN
approximation to the product of two TFNs [22].

An Example Problem

Let us now consider an adaptation of a replacement prob-
lem discussed by Lohmann [31] in which we speci¯cally
incorporate fuzzy uncertainty and use it as a vehicle for
illustrating our point.

Three current challengers, An = 1; 2; 3 for n = 1; : : : ; 15,
can replace the defender, a = 0. The time horizon of
N = 15 years is established. Each challenger has a phys-
ical lifetime of 5 years. The defender has a remaining life
of 3 years. For capital transfers, the cash °ow at period 0
is the purchase cost and the cash °ows at periods n > 0
are salvage values. The component cash °ows for the most
likely estimates plus or minus a percentage are listed in
Table III. Assume a MARR of 10%. Suppose the tax rate,
d, is 50% and MACRS depreciation tables for a 7-year re-
covery period, [14.29%, 24.49%, 17.49%, 12.49%, 8.92%,
8.92%, 8.92%, 4.46%], are utilized in the determination of
depreciation tax shield.

a n C = 1 C = 2 C = 3

0 0 5423 0 0
1 4194 §5% -15791 §5% 19200 §5%
2 3355 §5% -17685 §5% 19200 §5%
3 2684 §10% -19808 §10% 19200 §10%

1 0 20000 0 0
1 16100 §5% -8000 §5% 19200 §5%
2 13200 §5% -8960 §5% 19200 §5%
3 10840 §10% -10035 §10% 19200 §10%
4 8192 §10% -11239 §10% 19200 §10%
5 6554 §10% -12588 §10% 19200 §10%

2 0 21000 0 0
1 16800 §5% -7500 §5% 19200 §5%
2 13440 §5% -8400 §5% 19200 §5%
3 10252 §10% -9408 §10% 19200 §10%
4 8602 §10% -10537 §10% 19200 §10%
5 6881 §10% -11801 §10% 19200 §10%

3 0 22000 0 0
1 17600 §25% -7250 §25% 19200 §5%
2 14080 §25% -8120 §25% 19200 §5%
3 11264 §25% -9094 §25% 19200 §10%
4 9011 §25% -10186 §25% 19200 §10%
5 7209 §25% -11408 §25% 19200 §10%

TABLE III

Data for Example Problem.

The optimal sequence of decisions is determined via for-
ward dynamic programming with rewards modeled as fuzzy
numbers. Four primary cash °ows create the installation
cost and/or salvage value component cash °ow (see Figure
3):
² Purchase cost of the asset: ~P .
² Tax on capital gains at the sale of the asset at time
k ¡ n:

d ¢ ( ~Sk¡n ¡ ~Bk¡n)

where the book-value ~B is

~B = ~P (1¡
k¡nX

j=1

MACRSj)

.
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Time Period
n n+1 k-n-1 k-n

P

Sk-n
d*P*MACRS1 d*P*MACRSk-1

d*(Sk-n - Bk-n)

Time Period
n n+1 k-n-1 k-n

Ck-nC1 Ck-n-1

Time Period
n n+1 k-n-1 k-n

Rk-nRk-n-1
R1

C = 1

C = 2

C = 3

Salvage value

Tax on gain at
sale of asset

Purchase Cost

Tax shield from
depreciation

Operating costs

Operating revenues

Fig. 3. Standard cash °ow diagrams for each component cash °ow
in PSARM.

² Tax shield from depreciation of the asset during each
time period:

d ¢ ~P ¢MACRSk¡n¡j

for j = 0; : : : ; k ¡ n¡ 1.
² Salvage value of the asset at time k ¡ n: ~Sk¡n.

The operating costs component cash °ow consists of a sin-
gle cash out°ow representing after-tax operating costs: ~Cj
for j = 1; : : : ; k¡n. Similarly, the operating revenues com-
ponent cash °ow consists of a single cash in°ow represent-
ing after-tax operating revenues: ~Rj for j = 1; : : : ; k ¡ n.
Therefore, FPVi(a; n; 1; k) is

¡ ~P +
~Sk¡n

(1+i)k¡n + d ~P
Pk¡n

j=1
MACRSj

(1+i)j ¡ d( ~Sk¡n¡ ~Bk¡n)
(1+i)k¡n

(1 + i)n
;

(11)
FPVi(a; n; 2; k) is

¡
(1¡ d)

Pk¡n
j=1

~Cj
(1+i)j

(1 + i)n
; (12)

and FPVi(a; n; 3; k) is

(1¡ d)
Pk¡n
j=1

~Rj
(1+i)j

(1 + i)n
: (13)

Using the data from Table III, the calculations for a =
n = 0, k = 1 are as follows:

FPV0:1(0; 0; 1; 1) = [¡1146:95;¡1051:64;¡956:32]
FPV0:1(0; 0; 2; 1) = [¡7536:61;¡7177:73;¡6818:84]
FPV0:1(0; 0; 3; 1) = [8290:91; 8727:27; 9163:64]

which yields

FPV0:1(0; 0; 1) = [¡392:66; 497:91; 1388:48]:

Similar calculations for a = 1; 2; 3 yield

FPV0:1(1; 0; 1) = [515:91; 1500:00; 2484:09]
FPV0:1(2; 0; 1) = [511:36; 1500; 2488:64]
FPV0:1(3; 0; 1) = [¡228:41; 1431:82; 3092:04]:

Note that the salvage and purchase values and functional
relation (if used) appear more than once in the FPVi cal-
culations for C = 1, therefore the vertex method is used to
generate the correct FPVi. This entails computing deter-
ministically the problem for the modal (most likely values)
as well as an additional 23 times for all the possible combi-
nations of \best" and \worst" estimates for these param-
eters. Thus, Equation 7 gives the following for a one-year
horizon, k = 1:

FPV ?:1(1) = maxn;a fFPV:1(a; n; 1) + FPV ?:1(0)g
= [515:91; 1500:00; 2484:09] for a = 1.

(14)
The same calculations are performed for the remaining
stages, up to k = N , recording both the functional equa-
tion value and the optimal decision for each stage as in
Table IV.

Optimal Policy
N (asset, time installed) FPV ?0:1(N)

1 (1,0) [515.91,1500.00,2484.09]
2 (1,0) [1686.70,3159.42,4632.15]
3 (1,0) [2054.50,4759.95,7465.39]
4 (2,0) [2799.62,6360.66,9921.71]
5 (3,0) [413.48,7715.23,15017.00]
6 (3,0) (2,5) [731.00,8646.61,16562.20]
7 (3,0) (1,5) [1460.79,9676.98,17893.20]
8 (2,0) (2,4) [4711.79,10705.10,16698.40]
9 (3,0) (2,5) [2151.82,11664.70,21177.60]
10 (3,0) (3,5) [670.22,12505.80,24341.40]
11 (3,0) (3,5) (2,10) [867.37,13084.10,25300.80]
12 (3,0) (3,5) (1,10) [1320.51,13723.90,26127.20]
13 (3,0) (2,5) (2,9) [3339.13,14362.20,25385.40]
14 (3,0) (3,5) (2,10) [1749.59,14958.10,28166.60]
15 (3,0) (3,5) (3,10) [829.63,15480.30,30131.10]

TABLE IV

Dynamic Programming Results for Basic Example Problem

The Optimal Replacement Policy

As earlier we show the determination of the optimal re-
placement problem for the model example under fuzziness.
Solving the functional equation given in Equation 7 for
N = 15 results in the optimal replacement policy ¦:

(3; 0)(3; 5)(3; 10)

with

FPV ?0:1(15) = [829:63; 15480:30; 30131:10]:

This translates into buying asset 3 at time 0, and again at
time 5 and again at time 10. In this solution, the modal val-
ues of each FPV ?i (k) represent the NPV ?i (k) of the deter-
ministic model, while the lower and upper values indicate
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the overall uncertainty in the decision. The uncertainty
signi¯ed by the width of the base of each FPV ?i (k) also is
equivalent to the range of possible values determined via
multivariable sensitivity analysis. Thus a fuzzy model im-
mediately provides both the traditional deterministic NPV
for this policy as well as the range of values the NPV may
take due to uncertainty in the parameters.

Other uncertain factors may be introduced via the rela-
tion function f(a; n; C). If, for example, a moderate in°a-
tion increase of [1%; 2%; 3%] per year were expected while
the other parameters remained the same, the optimal re-
placement policy ¦ becomes:

(3; 0)(2; 5)(2; 10)

with

FPV ?0:1(15) = [¡969:74; 16558:10; 34313:60]:

Contrast this with the traditional stochastic model
SREDM where the solution is derived using Monte-Carlo
simulation, a technique that generates a large number of
realizations of the uncertain (and assumed random) vari-
ables and solves each set of them deterministically [31].
From this large sample, the probability that each alterna-
tive current asset is the optimal ¯rst choice can be esti-
mated (see Figure 4) as well as the corresponding cumu-
lative probability distributions of (1) the economic life of
each current asset, (2) the NPV of the optimal sequence of
challengers for a ¯nite horizon (see Figure 5, and (3) the
equivalent ¯nite horizon time for in¯nite horizon problems.

We note that the probability distributions generated by

Fig. 4. Monte-Carlo simulation results for the example problem
depicting the probability distribution for the optimal ¯rst choice.

SREDM are subjectively interpreted to determine the opti-
mal current decision and no information regarding future
decisions is available.

VI. Maintenance Decisions

Not all replacement decisions are of the form where the
only decisions are to \keep" or \replace" the existing asset.
However, the DP formulation is su±ciently general to allow
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Fig. 5. Monte-Carlo simulation results for the example problem
depicting the probability distribution for the optimal NPV.

for other options. For example, a third option may be the
\purchase of a used machine". Bellman describes the DP
formulation of the replacement model with the option to
purchase a used machine as well as that of a model with
an \overhaul" option [5]. The overhaul option can be done
either in a general manner where the cash °ows and other
variables are functions of both the installation time and
the overhaul time or by allowing the overhauled asset (t
years old) to maintain the characteristics of a younger asset
(t0 < t years old).

The e®ects of the maintenance may also be uncertain
variables that can be appropriately modeled as fuzzy num-
bers. Modeling an overhaul or maintenance option in PM-
SAR can be done either by de¯ning functions that relate an
overhauled asset's aggregate cash °ows and salvage value to
its installation time and overhaul time or by de¯ning chal-
lenging assets that represent the costs and characteristics
of an overhauled machine.

We return to the example problem for the PMSAR above
to illustrate a maintenance option with an imprecise or
vague e®ect. Suppose that the maintenance option is mod-
eled as a \ghost" asset which is de¯ned as follows: The
purchase cost P 0 of the \ghost" asset a0 is a function of the
cost of the maintenance option on the asset a currently in
place and the number of years n0 since a was installed.

P 0 = ([0:15; 0:20; 0:25] ¢ Pa)(1:03)n
0

where Pa is the purchase price of asset a. This particular
function states that the base maintenance cost is a fuzzy
number that is [15%; 20%; 25%] of the original cost of the
asset with an increase of 3% per year since installation. The
result of the maintenance is also fuzzy, a [6%; 10%; 12%]
reduction in the original operating costs for the follow-
ing year. The component cash °ows corresponding to this
maintenance challenger a0 are a function of the time n0 that
the maintenance occurs as well as the original asset and its
installation time. Let us denote performing maintenance
on the existing asset at period n as (M;n). The resulting
optimal maintenance and replacement policy ¦ for N = 15
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then becomes:

(M; 0)(M; 1)
(1; 2)(M; 3)(M; 4)(M; 5)(M; 6)
(1; 7)(M; 8)(M; 9)(M; 10)(M; 11)
(2; 12)(M; 13)(M; 14)

with an optimal fuzzy present value FPV ?0:1(15) =
[25709:00; 40749:90; 54887:80]. This translates to perform-
ing maintenance on the current defender at periods 0 and
1, purchasing asset 1 at period 2 and performing mainte-
nance on this asset each period until asset 1 is purchased
again in time 7. The maintenance at each period continues
on asset 1 until asset 2 is purchased at period 12. Mainte-
nance on asset 2 then performed at each remaining period.
The fuzzy present value with this maintenance option, in
this example, has risen signi¯cantly.

VII. Summary

Probability theory has been used as the traditional ap-
proach for modeling uncertainty in economic analysis. This
is acceptable only to the extent that uncertainty is satis-
factorily equated with randomness. However, there exist
other types of uncertainty that are especially relevant to
economic decision analysis. Thus, there is a role to be
played by nonprobabilistic uncertainty as shown in this ef-
fort. Many approaches have been shown possible. A brief
survey of replacement analysis, focusing on the use of non-
probabilistic uncertainty, is given. The use of triangular
fuzzy numbers provides a compromise between computa-
tional e±ciency and realistic modeling of the uncertainty.
Thus, this discussion emphasizes fuzzy numbers. In the
extension to the economic life of an asset model, the un-
certainty in the parameters is explicitly modeled. By only a
three-fold increase in the number of computations, the op-
timal choice based on the decision maker's best estimates of
these parameters is easily obtained. The traditional deter-
ministic models are a special case of this new possibilistic
model. In e®ect, PELAM performs multivariable sensitiv-
ity analysis on all the uncertain parameters concurrently
and incorporates this uncertainty into the determination of
the optimal decision. The bene¯ts for PMSAR are virtually
the same, except there is a greater increase in the number
of computations due to the vertex method. Contrast this
with the large number of repetitions that Monte-Carlo sim-
ulation requires, as well as the subjective interpretation of
the results, and this disadvantage is not severe.

When probability distributions are not known, or when a
stochastic model is too di±cult to solve, fuzzy sets and pos-
sibility theory o®er an e±cient alternative in replacement
analysis. There are a number of bene¯ts for modeling the
uncertainty in the replacement problem via fuzzy numbers.
We outline a few of them:

1. The use of fuzzy uncertainty may be more appropri-
ate when modeling systems with human subjectivity.
The only existing technique in replacement analysis
that modeled general uncertainty in the replacement
decision was a Monte-Carlo simulation method [29].

2. Creating a triangular distribution from the best,
worst, and most likely estimates of an expert is more
appropriate for possibility theory than probability the-
ory due to the lack of probabilistic information.

3. The results of each model can be easily plotted to
provide a graphical representation of the e®ects of the
uncertain parameters and can provide this information
without a signi¯cant increase in the computational
complexity. The algorithms are easily implemented
on a personal computer.

4. The use of TFNs retains the triangular distribution
throughout the solution algorithm and conveniently
shows the best, worst, and most likely NPVs of each
possible decision.

5. The use of fuzzy numbers corresponds to performing
sensitivity analysis on all uncertain parameters simul-
taneously, as well as identifying the answer to the de-
terministic version of the problem which corresponds
to the modal value of each fuzzy number.

We have illustrated the bene¯ts of explicitly modeling
uncertainty in engineering economy decisions using a fuzzy
set-theoretic framework. As in traditional replacement
analysis, the age of the asset served as the surrogate vari-
able from which all cash °ows could be determined. With
all factors in°uencing the decision in the models being mea-
sured in terms of pro¯t, the dynamic programming ap-
proach takes advantage of recurring subproblems to e±-
ciently determine the optimal policy. Other factors such as
operating e±ciency, machine safety, and machine reliabil-
ity may a®ect the replacement and maintenance decisions.
Yet, these attributes are not easily quanti¯ed, especially
in terms of pro¯t. One approach in practice is to con-
vert maintenance down-time into lost sales, examine safety
issues in terms of insurance costs and worker's compensa-
tion, and use other obtainable measures as surrogates for
these attributes. However, it is arguable that the decision
making problem may not be adequately modeled in that
framework. A fuzzy set-theoretic approach that identi¯es
di®erent measures for levels of repair, safety, maintenance
up-time and down-time, and other imprecisely de¯ned at-
tributes may provide a more informative replacement pol-
icy. Modeling in this framework would require a multi-
ple attribute decision making approach that incorporates
the unquanti¯able, incomplete, or nonobtainable informa-
tion. The reader is referred to [26] for fuzzy approaches to
multiple attribute and multiple objective decision making
problems.
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Appendix

Fuzzy set theory, a generalization of classical set theory,
was developed in 1965 [43]. Fuzziness describes sets that
have no sharp transition from membership to nonmember-
ship. Traditional modeling methods assume certain and
unambiguous structures and parameters, but uncertainty
is inherent in most real-world systems. Fuzzy set theory
provides a strict mathematical theory to describe this in-
herent characteristic.

Let X be a collection of objects denoted generically by
x.

De¯nition 1 ([43]) A fuzzy set (or fuzzy subset) ~A in X
is a set of ordered pairs

~A = fx; ¹ ~A(x)jx 2 Xg

where ¹ ~A(x) is the membership function of x in ~A which
maps X to the membership space M. If M is the closed
interval [0,1], then ~A is called a normal fuzzy set.

De¯nition 2 ([43]) The ®-level set of a fuzzy set ~A is the
crisp set of elements that belong to ~A at least to the degree
® 2 [0; 1].

De¯nition 3 ([43]) A fuzzy set ~A is convex if

¹ ~A (¸x1 + (1¡ ¸)x2) ¸ min (¹ ~A(x1); ¹ ~A(x2))

for x1;x2 2 X and ¸ 2 [0; 1]. An alternative de¯nition is a
fuzzy set is convex if all ®-level sets are convex.

The basis for generalizing crisp (non-fuzzy) mathemati-
cal concepts to fuzzy sets is the extension principle.

De¯nition 4 ([44]) Let X be a Cartesian product of uni-
verses X = X1; : : : ;Xr, and ~A1; : : : ; ~Ar be r fuzzy sets in
X1; : : : ;Xr, respectively. Let f be a mapping from X to
a universe Y, y = f(x1; : : : ;xr). The extension principle
allows the de¯nition of a fuzzy set ~B in Y by

~B = f(y; ¹ ~B(y)) jy = f(x1; : : : ;xr); (x1; : : : ;xr) 2 Xg
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where ¹ ~B(y) is

sup
(x1;:::;xr)2f¡1(y)

min
©
¹ ~A1

(x1); : : : ; ¹ ~Ar
(xr)

ª

if f¡1(y)6= ; and 0 otherwise.

Fuzzy numbers are a particular kind of fuzzy set.

De¯nition 5 ([46]) A fuzzy number ~M is a convex nor-
mal fuzzy set on the real line R such that (1) there exists
exactly one x0 2 R with ¹ ~M (x) = 1 and (2) ¹ ~M (x)is piece-
wise continuous. Denote the x0 2 R that satis¯es (1) as
the modal value of the fuzzy number.

Fuzzy arithmetic is based on the extension principle. The
arithmetic operations of addition, subtraction, multiplica-
tion, and division were developed by Dubois and Prade [14]
and an excellent overview is given in [15].

De¯nition 6 ([14]) A fuzzy number ~M is positive (nega-
tive) if ¹ ~M (x) = 0 for all x < 0 (x > 0).

Though the addition, subtraction, multiplication, and di-
vision operations are de¯ned for general fuzzy numbers, we
focus on the operations as they apply to triangular fuzzy
numbers. Let ~M1 = [l1;m1; u1] and ~M2 = [l2;m2; u2] be
two triangular fuzzy numbers with respective lower, most
likely, and upper estimates. The sum is de¯ned as

~M1 + ~M2 = [l1 + l2;m1 + m2; u1 + u2]

and is associative and commutative. The subtraction op-
eration is simply the addition operation on two fuzzy num-
bers, one of which has been multiplied by the scalar -1.
Scalar multiplication for TFNs is

a ~M1 =

½
[al1; am1; au1] for a ¸ 0
[au1; am1; al1] for a < 0

The di®erence of two TFNs is therefore

~M1 ¡ ~M2 = [l1 ¡ u2;m1 ¡m2; u1 ¡ l2]

which is also associative and commutative.

The multiplication operation for TFNs is only weakly
distributive over addition. Therefore the solution proce-
dure must either use the vertex method [12] or it may give
a di®erent outcome. For example, the following property
holds true in all cases

~M1( ~M2 + ~M3) µ ~M1
~M2 + ~M1

~M3

and is only equality under special circumstances or through
the use of the vertex method. The vertex method for TFNs
is straightforward: Each of the three TFNs above has 2
extreme points, li and ui for i = 1; 2; 3. All 23 combinations
are calculated for the above expression and the minimum
and maximum values are chosen. The drawback is that
there is an exponential number of calculations under this
algorithm.
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