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Abstract:
Uncertainty is present in virtually all replacement decisions due to unknown

future events, such as revenue streams, maintenance costs, and in°ation. Fuzzy
sets provide a mathematical framework for explicitly incorporating imprecision
into the decision-making model, especially when the system involves human
subjectivity. This chapter illustrates the use of fuzzy sets and possibility theory
to explicitly model uncertainty in replacement decisions via fuzzy variables and
fuzzy numbers. In particular, a fuzzy set approach to economic life of an asset
calculation as well as a ¯nite horizon single asset replacement problem with
multiple challengers is discussed. Because the use of triangular fuzzy numbers
provides a compromise between computational e±ciency and realistic modeling
of the uncertainty, this discussion emphasizes fuzzy numbers. The algorithms
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used to determine the optimal replacement policy incorporate fuzzy arithmetic,
dynamic programming with fuzzy rewards, the vertex method, and various rank-
ing methods for fuzzy numbers. A brief history of replacement analysis, current
conventional techniques, the basic concepts of fuzzy sets and possibility theory,
and the advantages of the fuzzy generalization are also discussed.

13.1 ECONOMIC DECISION ANALYSIS

Economic decision analysis is a useful tool, o®ering individuals and organi-
zations the techniques to model economic decision-making problems, such as
maintenance and replacement decisions, and determine an optimal decision.
However, the accuracy of the model determines the validity of the conclusion.
In many cases, the assumption of certainty in many models is made not so much
for validity but the need to obtain simpler and more readily solvable formula-
tions. Essentially, the tradeo® is between an inaccurate but solvable model and
a more accurate but potentially unsolvable one. In most real-world systems,
however, there are elements of uncertainty in the process or its parameters,
which may lack precise de¯nition or precise measurement, especially when the
system involves human subjectivity.

When developing a model of a system with uncertainty, the decision-maker
can either ignore the uncertainty, implicitly acknowledge it, or explicitly model
it. Ignoring the uncertainty usually results in a deterministic model of the
process with precise values for all parameters. Implicitly acknowledging the
uncertainty may still result in a deterministic model in which sensitivity analysis
or discount factors can be used to get an idea of how this uncertainty a®ects
the outcome. Lastly, the decision-maker can explicitly model the uncertainty
using speci¯c paradigms such as interval analysis, possibility theory, probability
theory, or evidence theory [Behrens and Choobineh, 1989].

The proper paradigm depends on the nature of the uncertainty. When the
probabilities are speci¯ed for the outcomes, then the theory of Von Neumann
and Morgenstern [Von Neumann and Morgenstern, 1944] provides the tools
necessary to determine the optimal decision. However, in many cases these
probabilities are neither de¯ned nor directly attainable. Under these circum-
stances, other theories are needed. The most common choice is the use of sub-
jective probability distributions and the theory of choice due to Savage [Savage,
1954]. However, considerable debate on the use of subjective probabilities ex-
ists and is well documented in the literature [Bezdek, 1994; Dubois and Prade,
1994; Klir, 1994; Kosko, 1994; Laviolette and Seaman, 1994]. From a psycho-
logical standpoint, the methods used to elicit these subjective probabilities and
the validity of the subjective probabilities themselves have been the focus of re-
search led by Tversky and Kahneman [Tversky and Kahneman, 1971; Tversky
and Kahneman, 1981; Tversky and Kahneman, 1974]. Their studies show that
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the heuristics employed to assess probabilities and predict values can sometimes
lead to \severe and systematic errors" [Tversky and Kahneman, 1974].

Because humans do not think naturally in probabilistic terms, they tend to
¯nd the notions of fuzzy sets and their linguistic based approaches more user-
friendly and appealing. We may view fuzzy set theory as a generalization of
classical set theory since it provides us with a mathematical tool for describ-
ing sets that have no sharp transition from membership to nonmembership.
Membership in a fuzzy set is de¯ned by a generalized version of the classical
indicator function called a membership function. Fuzzy sets allow the de¯ni-
tion of vague or imprecise concepts such as \approximately 1000". This theory
has been developed and successfully applied to numerous areas such as con-
trol, decision-making, engineering, and medicine. Its application to economic
analysis is natural due to the uncertainty inherent in many ¯nancial and invest-
ment decisions. As noted earlier, it provides a precise mathematical language
to model uncertainty due to vagueness and imprecision in events or statements
describing a system. More information on fuzzy set theory, particularly funda-
mental concepts such as fuzzy numbers, which are invoked in our presentation,
can be found in [Zadeh, 1978; Zimmerman, 1991].

13.2 REPLACEMENT ANALYSIS

One of the most practical and topical areas of engineering economics is replace-
ment analysis. Mathematical models and analysis methods are used to deter-
mine the sequence of replacement decisions that provides a required service for
a speci¯ed time horizon in an optimal manner. Maintenance and replacement
decisions are assumed to occur on a periodic basis. The decision-maker chooses
from various options, such as to keep, overhaul, or perform preventive mainte-
nance on the existing asset or replace it with a new/used asset. Any sequence
of decisions is called a replacement policy and any sequence that optimizes some
performance measure such as net present value or annual equivalent cost is an
optimal replacement policy.

In replacement analysis the economic life of an asset determines the replace-
ment cycle that gives the minimum annual equivalent cost (MAEC) of operating
a single asset over an in¯nite horizon [Sharp-Bette and Park, 1990]. Dynamic
programming (DP), with discounting to put more emphasis on short-term in-
come, is an acknowledged tool for the determination of the optimal replacement
policy for more general replacement models [Gluss, 1972]. Using the DP ap-
proach some of the restrictive assumptions of the economic life method can be
relaxed and still produce a computationally feasible solution algorithm. Early
pioneers in the use of dynamic programming for ¯nite horizon equipment re-
placement problems were Bellman and Wagner. Bellman [Bellman, 1955; Bell-
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man and Dreyfus, 1962] was the ¯rst to formulate the replacement problem as
a dynamic program. Optimal replacement policies were proposed ¯rst for the
case with no technological change and then assuming some type of technological
improvement. Bellman formulated a discounted DP version of the economic life
of an asset model and determined analytically the optimal age T to replace the
asset. In the more challenging technological improvement version, the revenue,
the upkeep costs, and the replacement costs are assumed to be functions of the
date the asset is installed as well as its age with respect to installation. Wagner
[Wagner, 1975] formulated the replacement problem as a network and solved
for the shortest path, which corresponded to the minimum outlay. Terborgh
[Terborgh, 1949] included linear obsolescence in his formulation while Alchian
[Alchian, 1952] allowed operating revenues and operating costs to increase lin-
early with time. Oakford [Oakford, 1970] modeled increasing revenues and
data. Dreyfus [Dreyfus and Law, 1977] modeled technological change in rev-
enue, maintenance, and replacement costs using bounded exponential functions.
The Dynamic Replacement Economy Decision Model (DREDM) developed in
[Oakford et al., 1984] is a generalization of Wagner's dynamic programming
model that allows for multiple challengers and time-varying parameters.

Replacement models of great interest and relevance to this research are those
that model uncertainty. Dreyfus and Law [Dreyfus and Law, 1977] treat the
replacement problem where determinism yields to stochasticity. Their model
includes the probability of a catastrophic failure in the asset being used as well
as an uncertain net operating cost that is modeled by another probability distri-
bution. The DP algorithm determines the minimum expected cost for the pro-
cess. The Stochastic Replacement Economy Decision Model (SRE) presented
by Lohmann [Lohmann, 1986] is a stochastic generalization of the DREDM.
The assumption that the cash °ows and relationships are known with certainty
was relaxed and the component cash °ows are modeled as triangular probability
distributions based on the decision-maker's subjective judgment. The solution
for this model is generated through Monte-Carlo simulation, which determines
the probability that each asset is the optimal choice at time 0 as well as the
probability distribution of the optimal net present value of the policy.

A tacit assumption implicit in the foregoing models is that uncertainty in the
replacement decision can be fully modeled either deterministically or stochas-
tically. This is not, however, always the case. Limiting replacement models to
these two approaches either ignores the uncertainty or assumes that all uncer-
tainty is probabilistic in nature and that the probabilistic information is fully
known. Categorically classifying all uncertainty as randomness may not be
reasonable or adequate.

In recent years the debate concerning the use of nonprobabilistic uncer-
tainty, and speci¯cally fuzzy sets, has surfaced in the area of economic analysis
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[Behrens and Choobineh, 1989; Buckley, 1987; Buckley, 1992; Chiu and Park,
1994; Choobineh and Behrens, 1992; Gupta, 1993; Hearnes, 1995; Ward, 1985].
The replacement decisions made at each time period are based not only on
the current cash °ows but also on projected future cash °ows of all possible
assets [Lohmann, 1986]. Therefore, uncertainty in these cash °ows can have
a pronounced e®ect on the optimal replacement policy. A fuzzy set theoretic
approach, as described in the sequel, may lead to more informed replacement
decisions when the assumptions for a probabilistic approach are not met. For
the deterministic case, a fuzzy set theoretic approach using fuzzy numbers is
equivalent to multivariable sensitivity analysis and immediately provides both
the deterministic optimal value and the possible range due to uncertainty.

13.3 FUZZY CONCEPTS IN CASH FLOW ANALYSIS

Cash °ows, the basic variable in replacement decisions, are used by managers
and ¯nancial analysts to measure the streams of money going into and °owing
out of a particular organization's operation [Sharp-Bette and Park, 1990]. Tra-
ditionally, cash °ows are treated as either deterministic or stochastic. However,
as shown in simulation studies [Oakford et al., 1981], uncertain information in
estimating these cash °ows can limit the value of the analysis. Errors in deter-
ministic cash °ow estimations can skew the results of the analysis. Similarly,
the use of subjective probability distributions is of concern since they gener-
ally cannot be veri¯ed, and the required historical information for generating
frequency-based probability distributions is not always available.

The fundamental types of uncertainty, nonspeci¯city, fuzziness, and strife,
are examined by Klir and Yuan [Klir and Yuan, 1995]. Uncertainty occurs in
replacement and maintenance decisions in various ways. Of particular interest
are nonspeci¯city and fuzziness which may factor into the estimates of the ag-
gregate cash °ows, the purchase prices/salvage values, the minimum attractive
rate of return (MARR), or the physical lifetimes of the assets. This is especially
true when these variables are based on the estimates provided by experts via the
use of such natural language statements as \approximately $1000". Through
the use of fuzzy variables one can represent this vagueness and imprecision.
In this presentation, however, these vague quantities will be represented using
triangular fuzzy numbers (TFNs).

Several basic concepts of fuzzy sets applicable to the foregoing forms of
uncertainty are fuzzy sets, ®-level sets , convexity, and triangular fuzzy numbers.
It is assumed that the reader is familiar with these concepts. If not, the reader
is referred to [Zadeh, 1978; Zimmerman, 1991] for a detailed review. Fuzzy
numbers are fuzzy sets de¯ned on the set of real numbers, generally used to
represent vague expressions, such as\about 20" or \approximately 1000", used



vi

often in the description of uncertain economic decision systems. A special type
of fuzzy number is the L-R fuzzy number introduced by Dubois and Prade
[Dubois and Prade, 1978]. These types of fuzzy numbers simplify the arithmetic
operations considerably. Triangular fuzzy numbers are a special type of L-
R fuzzy number that are used in the models developed in this research. A
triangular fuzzy number (TFN) is a fuzzy number MT = [l;m; r] de¯ned by the
membership function

¹MT (x) =

8
<
:

(x¡ l)=(m¡ l); for x 2 (l;m]
(r ¡ x)=(r ¡m); for x 2 (m; r)

0; otherwise
(13.1)

where m is the modal value and l and r are the left and right limits of the
support for the fuzzy number, respectively.

13.3.1 Nonprobabilistic Methods in Cash Flow Analysis

Research into fuzzy versions of cash °ows began with Ward [Ward, 1985], de¯n-
ing them as trapezoidal fuzzy numbers and solving a fuzzy present worth prob-
lem. Buckley [Buckley, 1987] used fuzzy numbers to develop fuzzy net present
value (NPV) and fuzzy net future value (NFV) with fuzzy interest rates over a
period of n years where n may also be fuzzy set. Buckley developed fuzzy equiv-
alents to continuous interest payments, the e®ective rate of interest, and regular
annuities as well. Restricting the fuzzy cash °ows to positive fuzzy numbers
allows the multiplication operation to be distributive over addition. The fuzzy
number of time periods produces nonlinearities that make computations more
complex. Li Calzi [Li Calzi, 1990] provided an axiomatic development for the
fuzzy extension of ¯nancial mathematics with a desire to maintain consistency
in the calculations. He examined two classes of fuzzy quantities, compact fuzzy
intervals and invertible fuzzy intervals, and proved general theorems regarding
consistency.

Two of the most recent and practical applications of nonprobabilistic uncer-
tainty to economic analysis are given in [Chiu and Park, 1994; Choobineh and
Behrens, 1992]. Choobineh and Behrens [Choobineh and Behrens, 1992] call
attention to the use of intervals and possibility theory in economic analysis.
The weak distributivity of interval arithmetic is noted, but a technique called
the vertex method [Dong and Shah, 1987] is utilized to bypass this problem in
interval and fuzzy arithmetic. Their approach to modeling cash °ows as fuzzy
intervals is similar to Ward's. Chiu and Park [Chiu and Park, 1994] use fuzzy
numbers in cash °ow analysis and provide a good survey of the major methods
for ranking mutually exclusive fuzzy projects. The cash °ows are modeled as
triangular fuzzy numbers and the linear approximation to the product of two
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triangular fuzzy numbers is investigated. The present worth of a fuzzy project
is also examined. Their resultant formulation of a fuzzy present worth is

PW =

nX

t=0

8
<
:(Pt)

Ã
tY

s=0

(1 +Rs)

!¡1
9
=
; (13.2)

where Pt is a positive or negative TFN representing the cash °ow at the end of
time t, n is the number of evaluation periods, and Rs is the nonnegative TFN
representing the discount rate at the end of time s. Extending these ideas to
replacement analysis, Hearnes [Hearnes, 1995] formulated fuzzy versions of the
economic life of an asset model and the ¯nite single asset replacement problem.
This work is used as a point of departure for the discussions that follow.

13.3.2 Fuzzy Arithmetic and Interval Analysis

Fuzzy numbers represent vague notions of precise quantities. It is essential to
be able to perform algebraic operations on them. The arithmetic operations
of addition, subtraction, multiplication, and division developed by Dubois and
Prade [Dubois and Prade, 1978] and particularly in [Dubois and Prade, 1987]
are particularly useful when modeling and analyzing cash °ows. The algebraic
operations for TFNs are speci¯cally reviewed. The choice of TFNs is in part
due to their simpli¯ed algebraic operations. However, the set of TFNs is not
closed under the operations of multiplication and division. The e®ect of using
a linear (TFN) approximation, which is studied thoroughly in [Kaufmann and
Gupta, 1988], is not signi¯cant for multiplication, inverse, and division opera-
tions. The TFN approximation to the multiplication operation is used in the
following models for computational simplicity. The approximation error was
also empirically determined to be not signi¯cant for the example problems in
the sequel.

Fuzzy numbers are a family of nested intervals [Choobineh and Behrens,
1992] which correspond to levels of \con¯dence" by the decision-maker and
therefore are closely related to interval analysis. However, like interval arith-
metic, the multiplication operation for fuzzy numbers is only weakly distribu-
tive over addition. This presents a problem when modeling with fuzzy numbers
since the outcome can depend on the form of the equation used. There are some
special cases, however, where the multiplication operation is distributive over
addition. If M1;M2;M3 are fuzzy numbers, the multiplication operation is
distributive over addition (i.e., M1 ¢ (M2 +M3) = M1 ¢M2 + M1 ¢M3) when
[Dubois and Prade, 1987]:

1. M1 is a real number|i.e., scalar multiplication is distributive over addi-
tion.
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2. M2 and M3 are both positive or both negative.

3. M2 = ¡M2 and M3 = ¡M3.

When conditions (1) { (3) are not met, a procedure called the vertex method
[Dong and Shah, 1987] preserves the distributivity of multiplication over addi-
tion. The price, however, is an exponential increase in the number of compu-
tations.

13.3.3 Some Sources of Uncertainty in Replacement Analysis

Several aspects of replacement analysis contain imprecision and vagueness that
warrant further discussion. We postulate that some of these variables, such as
the physical lifetime of an asset, aggregate cash °ow estimates, MARR, and
in°ation signi¯cantly impact the optimal replacement policy.

Physical Lifetime of an Asset. The physical lifetime of some assets may
not be known with certainty, yet this is tacitly assumed and treated as deter-
ministic in many models. In some situations, if enough information is known,
then it is appropriate to treat it probabilistically. However, in cases where the
asset is a new technology or a new model, this information is not generally
available and such an approach must be considered suspect. In this case, it is
instructive to treat the uncertainty in this variable through the use of fuzzy DP
models but particularly those that allow stochastic or fuzzy termination times
[Buckley, 1987; Kacprzyk, 1978]. For example, for an older asset the historical
information about failures may be known and a probability distribution for
failure can be derived. However, for an asset with new technology estimate of
physical lifetime may be a fuzzy set such as \about 5 years" or \more or less
10 years". In each of these cases, the decision space has an uncertain bound-
ary that a®ects the overall decision policy. Stochastic and fuzzy DP [Esogbue
and Kacprzyk, 1996] provide methods for dealing with this type of uncertainty.
Similarly, there may be uncertainty in the actual horizon N of the project
which may be either stochastic or fuzzy. For example, the project duration of
asset life may be determined if the state of the asset reaches some imprecisely
de¯nable point.

Aggregate Cash Flows. Another source of uncertainty in replacement and
maintenance decisions is the estimation of the aggregate cash °ow for each time
period. In previous models, aggregate cash °ows were treated as either deter-
ministic or stochastic variables, but errors in these can lead to skewed analysis
[Oakford et al., 1981]. Subjective probability distributions generally cannot
be veri¯ed, while the required historical information for generating frequency-
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based probability distributions is not generally available. In these cases, it may
be more appropriate to de¯ne the aggregate cash °ows as possibility distribu-
tions based on a decision-maker's opinion or expert judgment.

Minimum Attractive Rate of Return. The minimum attractive rate of
return (MARR), which is usually used for project evaluation and comparison,
is also another variable which may realistically possess forms of uncertainty
[Sharp-Bette and Park, 1990]. However, in classical approaches this either is
not addressed or is erroneously assumed to be well known or deterministic. The
selection of the proper MARR plays an important role in the outcome of the
maintenance and replacement decisions. There are a number of ways to deter-
mine a corporation's MARR, such as the use of the Delphi method involving its
directors or some chosen mathematical formula. However, the MARR can be
investment or management dependent. Because of the uncertainties character-
istic of investment and management decision processes, it is inevitable that any
MARR thus determined is imprecise or fraught with uncertainties. Variation
in the MARR and its e®ect on the optimal policy are vital pieces of information
to decision-makers. These may be better modeled as a fuzzy variable or fuzzy
number.

In°ation. A number of engineering economic studies discuss the incorpora-
tion of in°ation and in°ation rate in their models. It is tacitly assumed or
conceded that the measurement of this variable is precise. This, however, is
not the case. We know that there is a considerable degree of uncertainty due to
the way that it is measured. For example, the Consumer Price Index presently
used by the government of the United States of America is now under review
due to the concern expressed by certain economists. It is argued that the \bas-
ket" of goods and services it uses may not accurately re°ect the true in°ation
(see, for example, [Samuelson, 1996]). The lack of speci¯city or precision in-
volved in the measurement of the in°ation rate may necessitate the injection
of fuzzy modeling such as the use of fuzzy numbers to represent it.

13.4 ECONOMIC LIFE OF AN ASSET MODEL

In some replacement decisions, an asset is required for a long period of time.
In these cases, an in¯nite horizon can be assumed and the decision variable
becomes the life of the asset. This is commonly called the economic life of an
asset. The chosen replacement cycle is the cycle corresponding to the minimum
annual equivalent (AE) cost of owning and operating the asset [Sharp-Bette
and Park, 1990]. An in¯nite sequence of replacements and stationary cash
°ows (with respect to installation time) is assumed.
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The general deterministic n-period replacement cycle gives the following AE
cost:

AEn(i) = (P ¡ Sn)(A=P; i; n) + Sni+ (A=P; i; n)

nX

n0=1

(Cn0(P=F; i; n
0)) (13.3)

where

i ´ minimum attractive rate of return (MARR)
P ´ initial purchase price
Sn ´ salvage value at end of period n
Cn0 ´ aggregate cash out°ow at end of period n0

(A=P; i; n) ´ capital recovery factor
(P=F; i; n) ´ present worth factor

Two signi¯cant factors determining the optimal replacement cycle are the
aggregate cash °ows at each time period and the MARR. The MARR is set by
the organization and is considered a crisp (deterministic) number in the model.
The future aggregate cash °ows and salvage values, however, are a source of
considerable uncertainty and are modeled as triangular fuzzy numbers. These
parameters are represented as fuzzy versions of their original counterparts by
~Cn0 and ~Sn, respectively. The decision-maker determines a best, worst, and
most likely estimate for each. This method of elicitation is quick and has been
used previously in replacement analysis [Lohmann, 1986]. These estimates (l,
m, and r, respectively) are transformed into a TFN de¯ned as [l;m; r].

Generalizing to consider fuzzy cash °ows and salvage values, one obtains
the Possibilistic Economic Life of an Asset Model (PELAM) [Hearnes, 1995].
The fuzzy economic life of an asset is de¯ned as the replacement cycle, n,
corresponding to the minimum fuzzy AE (FAE) of all possible replacement
cycles. The traditional model in Equation 13.3 is manipulated into a proper
representation|i.e., all fuzzy numbers appear only once in the equation:

FAEn(i) = P (A=P; i; n)+ ~Sn (i¡ (A=P; i; n))+(A=P; i; n)

nX

n0=1

³
~Cn0(P=F; i; n

0)
´

(13.4)
where

~Sn ´ TFN representing the \salvage value at end of period n"
~Cn0 ´ TFN representing the \aggregate cash °ow at end of period n0"

The operations used in PELAM are scalar multiplication, addition, and sub-
traction. Therefore, the use of TFNs to model the cash °ows gives TFNs as a
result. However, if the MARR is also modeled as a fuzzy number, the result is
not a TFN and the linear approximation to TFN multiplication and the vertex
method must be used.
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An Example Problem

An asset to perform service A is required by XYZ corporation in-
de¯nitely. Asset B can be purchased for $50 (all dollar amounts are in
thousands) and has a physical life of 5 years. The aggregate cash °ows
(operating costs - operating revenues) for each year of the life of asset B
are $3, $4, $6, $10, and $12, respectively, for n = 1; : : : ; 5. If the asset
is sold at the end of the year, its salvage value is $35, $30, $27, $23, and
$20, respectively, for n = 1; : : : ; 5. Assume a MARR of 10%. Determine
the economic life of Asset B.

The assumption of certainty in future cash °ows is unrealistic, except in
some cases such as when the asset is covered by a service contract. Likewise,
future salvage values are dependent on the state of the equipment at that
time, possible technological breakthroughs that have occurred, and numerous
other uncertain events. The deterministic data is treated as the \most likely"
estimates. The local expert or decision-maker provides additional information,
namely the \best" and \worst" estimates:

Being pessimistic, the decision-maker believes that the cash °ows (op-
erating costs - revenues) might be much higher than the \most likely"
estimates, and the salvage values might be much lower. Therefore the
high estimates for the cash °ows are $5, $7, $10, $15, and $18, respec-
tively, for n = 1; : : : ; 5. The low estimates remain near the \most likely"
estimates|$2, $3, $5, $8, and $10. The salvage values high estimates are
$38, $32, $29, $27, and $25. The low estimates are $32, $24, $21, $18,
and $15.

Table 13.1 Results of PELAM for Example Problem.

Replacement Cycle (Years) Fuzzy AE Cost of Replacement Cycle

1 [19:00; 23:00; 28:00]
2 [16:05; 18:00; 23:33]
3 [14:58; 16:19; 20:94]
4 [14:22; 16:30; 20:75]
5 [14:30; 16:46; 21:09]

Table 13.1 gives the FAE costs for each replacement cycle, n = 1; : : : ; 5. Of
these, the \minimum" must be chosen. Comparing alternatives described by
fuzzy numbers requires a ranking method. All ranking methods reported in
the literature su®er from some pathological examples where the result is coun-
terintuitive [Bortolan and Degani, 1985; Chiu and Park, 1994]. The rankings



xii

Table 13.2 Ranking of FAE Costs in Example Problem by Various Methods.

Ranking Method Ranking

Adamo, ® = 0:9 FAE3 » FAE4 » FAE5 < FAE2 < FAE1

Chang FAE3 < FAE4 < FAE5 < FAE2 < FAE1

Chiu and Park, w = 0:3 FAE4 < FAE3 < FAE5 < FAE2 < FAE1

Choobineh and Behrens FAE4 < FAE3 < FAE5 < FAE2 < FAE1

Kaufmann and Gupta FAE4 < FAE3 < FAE5 < FAE2 < FAE1

Traditional model AE3 < AE4 < AE5 < AE2 < AE1

of selected methods are given in Table 13.2. Note that the rankings are not
all in agreement as shown in Table 13.2. However, several of them do agree
with each other (Chiu and Park, Choobineh and Behrens, and Kaufmann and
Gupta). All three of these methods use a ranking function based on the l, m,
and r values of the TFN. In the remainder of this paper, the Kaufmann and
Gupta method is used as the preferred ranking function.

The Kaufmann and Gupta method is a hierarchical test. It can be described
as follows: Let M1 = [l1;m1; r1] and M2 = [l2;m2; r2] be two di®erent TFNs.

TEST 1: Compare the ordinary numbers : If 0:25(l1 + 2m1 + r1) < 0:25(l2 +
2m2 + r2) then M1 < M2 else if 0:25(l1 + 2m1 + r1) > 0:25(l2 + 2m2 + r2)
then M1 > M2, else go to TEST 2.

TEST 2: Compare the modal values: If m1 < m2 then M1 < M2 else if
m1 > m2 then M1 > M2 else go to TEST 3.

TEST 3: Compare the divergence: If (r1 ¡ l1) < (r2 ¡ l2) then M1 < M2 else
M1 > M2.

This method is usually used because (1) it is relatively easy to compute and
(2) it always chooses a maximum when the two TFNs are not equal. The latter
property is especially important in models based on dynamic programming
where a unique optimal value at each stage is desired.

The Optimal Replacement Cycle for the Example Problem

We now show the determination of the optimal replacement policy for the ex-
ample problem. Using the Kaufmann and Gupta ranking method for reasons
discussed above, the optimal replacement cycle for Asset B is 4 years with a
fuzzy annual equivalent cost of [14:22; 16:30; 20:75]. The modal values of the
TFNs for each replacement cycle correspond to the deterministic AE costs from
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the traditional economic life of an asset model. Therefore, the traditional op-
timal replacement cycle is immediately available from the fuzzy solution, and
the fuzzy solution using fuzzy numbers is equivalent to performing sensitivity
analysis on all uncertain variables. It is also interesting to note that using the
traditional model the optimal replacement cycle is 3 years, which is di®erent
from the 4 years determined by PELAM. Additionally, PELAM determines the
optimal replacement cycle based on the decision-maker's estimates of the un-
certainty and therefore provides a more informative answer than the traditional
model.

13.5 DYNAMIC PROGRAMMING FORMULATION OF ECONOMIC

LIFE OF AN ASSET

Bellman formulated a discounted DP approach to determining the optimal re-
placement cycle of an asset [Bellman and Dreyfus, 1962]. This approach allows
for the modeling of technological change, unlike the standard economic life of
an asset model. Technological change implies that the operating revenues and
costs, as well as purchase and salvage values, change over time due to tech-
nological improvements. An excellent example is the personal computer. As
technology improves it a®ects the purchase price and salvage values of existing
computers. The revenues and costs may also be a®ected by the faster proces-
sors.

In the traditional model, at each time period n = 0; 1; 2; : : :, the choice is
made to either keep the existing asset or purchase a new one. The following
model is an adaptation of Bellman's model [Bellman and Dreyfus, 1962] to the
variables and data used in the economic life of an asset model in Section 13.4.
This model also uses the year-end convention for operating cash °ows. The
functional equation is de¯ned:

f(t) ´ total discounted return (TDR) over an in¯nite horizon starting
with a machine of age t and using an optimal policy.

Thus

f(t) = max

·
PURCHASE : St ¡ P + ® (f(1)¡ C1)
KEEP : ® (f(t+ 1)¡ Ct+1)

¸
(13.5)

where
® ´ discounting rate = (1 +MARR)¡1

P ´ initial purchase price
Sn ´ salvage value at the end of period n
Cn ´ aggregate cash out°ow at end of period n

Noting that an optimal policy has the form of keeping a new machine until it
is T years old and then replace it with a new machine results in an analytical
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solution of the optimal life cycle

T = argmaxN=1;2;:::

( (S1¡P¡C1)
1¡® if N = 1

®N¡1(SN¡P )¡®NC1¡
P

N¡1

n=1
®n¡1Cn+1

1¡®N otherwise

)

(13.6)
with the optimal total discounted return of a new machine being

f(0) = ¡C1 + ®

"
max

N=1;2;:::

( (S1¡P¡C1)
1¡® if N = 1

®N¡1(SN¡P )¡®NC1¡
P

N¡1

n=1
®n¡1Cn+1

1¡®N otherwise

)#

(13.7)
Generalizing this model, the discount factor ® is related to the MARR and

remains a crisp number. The future aggregate cash °ows and salvage values,
however, are a source of considerable uncertainty. These are modeled as TFNs
and represented as fuzzy versions of their original counterparts by the tilde.
Generalizing to consider fuzzy cash °ows and salvage values gives the following:

T = argmaxN=1;2;:::

8
<
:

( ~S1¡P¡ ~C1)
1¡® if N = 1

®N¡1( ~SN¡P)¡®N ~C1¡
PN¡1

n=1
®n¡1 ~Cn+1

1¡®N otherwise

9
=
;
(13.8)

with the optimal total discounted return of a new machine being

f(0) = ¡ ~C1+®

2
4 max
N=1;2;:::

8
<
:

( ~S1¡P¡ ~C1)
1¡® if N = 1

®N¡1( ~SN¡P)¡®N ~C1¡
PN¡1

n=1
®n¡1 ~Cn+1

1¡®N otherwise

9
=
;

3
5

(13.9)

An Example Problem

Using the same data as in the example problem in Section 13.4 above, the total
discounted returns for the DP formulation are given in Table 13.3 below.

The Optimal Replacement Cycle for the Example Problem

In this example the optimal replacement cycle is 3 years for the fuzzy version
under all ¯ve ranking methods. By using fuzzy numbers that have a modal
value equivalent to the deterministic value of each variable, the solution to the
traditional formulation of Bellman's model are the modal values of the respec-
tive fuzzy TDRs. Thus the traditional model also has an optimal replacement
cycle of 3 years.
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Table 13.3 Results of Possibilistic Version of Bellman's Model for the Example Problem.

Replacement Cycle (Years) Fuzzy TDR of Replacement Cycle

1 [¡230:00;¡180:00;¡140:00]
2 [¡186:67;¡131:91;¡111:90]
3 [¡164:71;¡115:02;¡98:34]
4 [¡164:99;¡117:60;¡95:90]
5 [¡170:01;¡120:45;¡97:71]

13.6 THE GENERAL SINGLE ASSET REPLACEMENT PROBLEM

When a service is required for only a ¯nite period or the aggregate cash °ows
are nonstationary with respect to installation time, a more general approach
than PELAM is needed. The general single asset replacement problem is widely
studied in the literature [Bean et al., 1985; Dreyfus and Law, 1977; Lohmann,
1986; Oakford et al., 1984]. It may be de¯ned as follows:

an ´ asset in use at time period n
N ´ number of time periods that service is required
An ´ number of challenging assets at time period n

The time periods n = 0; 1; : : : ; N represent the periodic replacement de-
cisions. If N is ¯nite, the problem is a ¯nite horizon replacement problem.
Otherwise, the problem is an in¯nite horizon problem. The existing asset is
known as the defender and can only be placed into service at period 0. The A0

assets available for replacement at time 0 are known as current challengers , and
the An assets available at future periods are known as future challengers. For
each period n in the lifetime of each asset, there are three component cash °ows
describing the installation cost and/or salvage value, operating revenues, and
operating costs at period n. The component cash °ows of the future challengers
are related to the corresponding component cash °ow of a current challenger
by a scalar function f(a; n; C) where n is the time period in which asset a is
installed and C 2 f1; 2; 3g represents the respective component cash °ow. This
function allows for the modeling of in°ation, technological improvements, and
other time-dependent e®ects on cash °ows. For example, to model a crisp 3%
in°ation rate, then f(a; n; C) ´ 1:03n for all a; C. Other more complicated
variations can be de¯ned to model a wide range of factors. The component
cash °ows and relation functions are either known with certainty or estimated
by the decision-maker and may also be a fuzzy variable. The problem is to
¯nd the sequence(s) of keep/replace decisions that maximize net present value
(NPV).
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The Possibilistic Model for Single Asset Replacement via dynamic program-
ming (PMSAR) [Hearnes, 1995] is a generalization of SREDM in [Oakford
et al., 1984] to allow for fuzzy parameters such as aggregate cash °ows, in°a-
tion, or technological change. SREDM used the \best", \worst", and \most
likely" estimates of the parameters, as in PERT analysis, to create triangular
probability distributions. Using those probability distributions, Monte-Carlo
simulation provided estimates of the probability of each asset being the optimal
choice at period 0. Under such conditions of estimating the distributions, it is
arguable that a possibility theory approach is more appropriate. Like PELAM,
PMSAR uses TFNs for cash °ows. However, PMSAR does not assume an in-
¯nite horizon and allows for replacement by competing assets. There is also
the possibility of having uncertainty in technological improvements, in°ation,
or other aspects of the future challengers, which is also modeled as a TFN
through a relation function f . The solution technique is a forward dynamic
program that uses the Kaufmann and Gupta ranking method to determine the
optimal decision and functional equation value at each time period.

We now present a fuzzy analog of the SREDM model. For ease of exposition,
we de¯ne the following variables of the model:

1. Let k be the state of the system, k = 1; 2; : : : ; N , which represents the
number of periods of required service.

2. There are two decision variables: (1) n, the period to place an asset into
service and (2) a, the asset to place into service.

3. The immediate reward r(a; n; k) is the FPV generated by placing asset a
into service at period n and keeping it in service until period k. De¯ning
La as the physical lifetime, in time periods, of asset a gives:

r(a; n; k) =

½P3
C=1 FPV (a; n; C; i; k ¡ n) if k ¡ n · La

¡M otherwise
(13.10)

where M >> 0 is some su±ciently large number and

FPV (a; n; C; i; k ¡ n) ´ Fuzzy Present Value of the installation cost
and/or salvage value, operating revenues,
and operating costs for C = 1; 2; 3, respect-
ively, of placing asset a into service at period
n for the remaining k ¡ n time periods using
an MARR of i.

4. The transition function ¿ (a; n; k) for placing asset a into service at time
n for the remaining k ¡ n time periods is ¿ (a; n; k) = n.
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De¯ne the FPV of the functional for this process as the value obtained using
an optimal replacement policy from state 0 to state k. Invoking Bellman's
Principle of Optimality results in the following functional equation of dynamic
programming:

FPV ?(k) = max
n;a
fr(a; n; k) + FPV ?(¿(a; n; k))g (13.11)

where

n 2 f0; 1; : : : ; k ¡ 1g and a 2
½
f0; 1; : : : ; A0g if n = 0
f1; 2; : : : ; Ang if n > 0

and boundary condition FPV ?(0) = [0; 0; 0]. The max operation is performed
through the Kaufmann and Gupta ranking method on TFNs.

Relating the parameters of future challengers to the parameters of current
challengers via a fuzzy relation function f(a; n; C) is a desirable feature since
there may exist considerable uncertainty of the nonprobabilistic nature in future
events. This addition is not without its price, however. The model requires
multiplication of two fuzzy numbers, which is only weakly distributive and is
not closed over TFNs. This problem may be readily circumvented by the adroit
use of the vertex method [Dong and Shah, 1987] and a TFN approximation to
the product of two TFNs [Kaufmann and Gupta, 1988].

An Example Problem

Let us now consider an adaptation of a replacement problem discussed by
Lohmann [Oakford et al., 1984] in which we speci¯cally incorporate fuzzy un-
certainty and use it as a vehicle for illustrating our point.

Three current challengers, An = 1; 2; 3 for n = 1; : : : ; 15, can replace
the defender, a = 0. The time horizon of N = 15 years is established.
Each challenger has a physical lifetime of 5 years. The defender has a
remaining life of 3 years. For capital transfers, the cash °ow at period
0 is the purchase cost and the cash °ows at periods n > 0 are salvage
values. The component cash °ows for the most likely estimates plus or
minus a percentage are listed in Table 13.4. Assume a MARR of 10%.
Suppose the tax rate is assumed to be 50% and MACRS depreciation
tables for a 7-year recovery period are utilized in the determination of
depreciation tax shield.

The optimal sequence of decisions is determined via forward dynamic pro-
gramming with rewards modeled as fuzzy numbers. The functional equation
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Table 13.4 Data for Example Problem.

a n C = 1 C = 2 C = 3

0 0 5423 0 0
1 4194 §5% -15791 §5% 19200 §5%
2 3355 §5% -17685 §5% 19200 §5%
3 2684 §10% -19808 §10% 19200 §10%

1 0 20000 0 0
1 16100 §5% -8000 §5% 19200 §5%
2 13200 §5% -8960 §5% 19200 §5%
3 10840 §10% -10035 §10% 19200 §10%
4 8192 §10% -11239 §10% 19200 §10%
5 6554 §10% -12588 §10% 19200 §10%

2 0 21000 0 0
1 16800 §5% -7500 §5% 19200 §5%
2 13440 §5% -8400 §5% 19200 §5%
3 10252 §10% -9408 §10% 19200 §10%
4 8602 §10% -10537 §10% 19200 §10%
5 6881 §10% -11801 §10% 19200 §10%

3 0 22000 0 0
1 17600 §25% -7250 §25% 19200 §5%
2 14080 §25% -8120 §25% 19200 §5%
3 11264 §25% -9094 §25% 19200 §10%
4 9011 §25% -10186 §25% 19200 §10%
5 7209 §25% -11408 §25% 19200 §10%

for the ¯rst decision stage is computed as follows:

FPV (0; 0; 1; 0:1; 1) = - Purchase + PV(Salvage)
+ PV(Tax shield from depreciation)
- PV(Tax on gain at sale)

= ¡[5423; 5423; 5423] + [3984:3; 4194; 4403:7] ¢ (1:1)¡1

+[5423; 5423; 5423] ¢ 0:5 ¢ 0:1429
¡([3984:3; 4194; 4403:7]
¡[5423; 5423; 5423] ¢ (1¡ 0:1429))

= [¡1146:95;¡1051:64;¡956:32]
FPV (0; 0; 2; 0:1; 1) = PV(After-tax costs)

= [¡7536:61;¡7177:73;¡6818:84]
FPV (0; 0; 3; 0:1; 1) = PV(After-tax revenues)

= [8290:91; 8727:27; 9163:64]
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Note that the salvage and purchase values and functional relation (if used)
appear more than once in the FPV calculations for C = 1, therefore the
vertex method is used to generate the correct FPV . This entails computing
deterministically the problem for the modal (most likely values) as well as an
additional 23 times for all the possible combinations of \best" and \worst"
estimates for these parameters. This gives the following for N = 1:

FPV ?(1) = maxn=0;a2f0;1;2;3g
nP3

C=1 FPV (a; 0; C; 0:1; 1) + FPV ?(0)
o

= max

8
><
>:

[¡392:66; 497:91; 1388:48] + [0; 0; 0] for a = 0; n = 0
[515:91; 1500:00; 2484:09] + [0; 0; 0] for a = 1; n = 0
[511:36; 1500; 2488:64] + [0; 0; 0] for a = 2; n = 0
[¡228:41; 1431:82; 3092:04] + [0; 0; 0] for a = 3; n = 0

9
>=
>;

= [515:91; 1500:00; 2484:09] for a = 1.
(13.12)

The same calculations are performed for the remaining decision stages, up to
k = 15, recording both the functional equation value and the optimal decision
for each stage as in Table 13.5.

Table 13.5 Dynamic Programming Results for Basic Example Problem.

N Optimal Policy (asset, time installed) FPV ?(N)

1 (1,0) [515.91,1500.00,2484.09]
2 (1,0) [1686.70,3159.42,4632.15]
3 (1,0) [2054.50,4759.95,7465.39]
4 (2,0) [2799.62,6360.66,9921.71]
5 (3,0) [413.48,7715.23,15017.00]
6 (3,0) (2,5) [731.00,8646.61,16562.20]
7 (3,0) (1,5) [1460.79,9676.98,17893.20]
8 (2,0) (2,4) [4711.79,10705.10,16698.40]
9 (3,0) (2,5) [2151.82,11664.70,21177.60]
10 (3,0) (3,5) [670.22,12505.80,24341.40]
11 (3,0) (3,5) (2,10) [867.37,13084.10,25300.80]
12 (3,0) (3,5) (1,10) [1320.51,13723.90,26127.20]
13 (3,0) (2,5) (2,9) [3339.13,14362.20,25385.40]
14 (3,0) (3,5) (2,10) [1749.59,14958.10,28166.60]
15 (3,0) (3,5) (3,10) [829.63,15480.30,30131.10]
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The Optimal Replacement Policy for the Example Problem

As earlier we show the determination of the optimal replacement problem for
the model example under fuzziness. Solving the functional equation given in
Equation 13.11 for N = 15 results in the optimal replacement policy:

(3; 0)(3; 5)(3; 10) with FPV ?(15) = [829:63; 15480:30; 30131:10]:

This translates into buying asset 3 at time 0, again at time 5, and again at time
10. In this solution, the modal values of each FPV ?(k) represent the NPV ?(k)
of the deterministic model, while the lower and upper values indicate the overall
uncertainty in the decision. The uncertainty signi¯ed by the width of the base
of each FPV ?(k) also is equivalent to the range of possible values determined
via multivariable sensitivity analysis. Thus a fuzzy model immediately provides
both the traditional deterministic NPV for this policy as well as the range of
values the NPV may take due to uncertainty in the parameters.

Other uncertain factors may be introduced via the relation function f(a; n; C).
If, for example, a moderate in°ation increase of [1%; 2%; 3%] per year were ex-
pected while the other parameters remained the same, the optimal replacement
policy becomes:

(3; 0)(2; 5)(2; 10) with FPV ?(15) = [¡969:74; 16558:10; 34313:60]:

Contrast this with the traditional stochastic model, SREDM, where the so-
lution is derived using Monte-Carlo simulation. A large number of realizations
of the uncertain (and assumed random) variables are generated and each set of
them is solved deterministically [Oakford et al., 1984]. From this large sample,
the probability that each alternative current asset is the optimal ¯rst choice can
be estimated (see Figure 13.1) as well as the corresponding cumulative proba-
bility distributions of (1) the economic life of each current asset, (2) the NPV of
the optimal sequence of challengers for a ¯nite horizon (see Figure 13.2, and (3)
the equivalent ¯nite horizon time for in¯nite horizon problems. We note that
the probability distributions generated by SREDM are subjectively interpreted
to determine the optimal current decision and no information regarding future
decisions is available.

13.7 INSPECTION AND REPLACEMENT MODELS

Another problem of great interest and relevance is inspection and replacement
under uncertainty. In real-life problems, it is more common to have a com-
bination of inspection and replacement, with elements of uncertainty in each.
Dreyfus and Law [Dreyfus and Law, 1977] treat this situation stochastically.
There do not exist any analogous models involving either a possibilistic or fuzzy
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Figure 13.1 Monte-Carlo simulation results for the example problem depicting the prob-

ability distribution for the optimal ¯rst choice.

Figure 13.2 Monte-Carlo simulation results for the example problem depicting the prob-

ability distribution for the optimal NPV.



xxii

approach to this problem. For ease of presentation, let us examine the stochas-
tic model using it as the leitmotif for discussing the role of fuzziness in this
more realistic situation.

In the inspection and replacement model, parts are inspected at the begin-
ning of a time period and fail at the end of a time period. Parts that are
inspected and judged to be in working order are assumed to work just as well
as a new part and are given an age of 0. Because of the series con¯guration,
any part failing in the system causes the entire system to fail. The proba-
bility that a part j is good at the beginning of a period given that it was
also good at the beginning of the previous period is pj . For inspection of a
single part j it takes cj time periods. Inspection of multiple parts j1; : : : ; jm
saves time and takes cj1:::jm < cj1 + ¢ ¢ ¢ + cjm . Similarly, replacement takes
rj and rj1:::jm < rj1 + ¢ ¢ ¢ + rjm time periods. Let the parts have initial ages
t0(j1); : : : ; t0(jm). The objective is to maximize the expected number of periods
that the system remains in working order in the next N periods.

As an example, let m = 2. Several DP functional equations are needed to
clarify the model:

fn(g1; g2) = Maximum expected number of periods from period n
through N that the system is working, given that
period n starts with parts 1 and 2 last known to be
in good order g1 and g2 periods previously.

For convenience let

Kn(g1) = Maximum expected number of periods from period n
through N that the system is working, given that
period n starts with parts 1 last known to be
in good order g1 and part 2 has just been inspected
and found to be in a failed condition

Ln(g2) = Maximum expected number of periods from period n
through N that the system is working, given that
period n starts with parts 2 last known to be
in good order g2 and part 1 has just been inspected
and found to be in a failed condition

Mn = Maximum expected number of periods from period n
through N that the system is working, given that
period n starts with parts 1 and 2 just inspected
and found to be in a failed condition

The possible actions are to leave the system alone (LA), inspect any combina-
tion of parts (I1, I2, I12), or replace any combination of parts (R1, R2, R12).
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This gives

fn(g1; g2) = max

2
6666666664

LA : pg1

1 p
g2
2 + fn+1(g1 + 1; g2 + 1)

I1 : pg1

1 fn+c1(0; g2) + (1¡ pg1

1 )Ln+c1(g2)
I2 : pg2

2 fn+c2(g1; 0) + (1¡ pg2

2 )Kn+c2(g1)
I12 : pg1

1 p
g2
2 fn+c12

(0; 0) + (1¡ pg11 )pg22 Ln+c12
(g2)

+pg11 (1¡ pg22 )Kn+c12
(g1) + (1¡ pg11 )(1¡ pg2

2 )Mn+c12

R1 : fn+r1(0; g2)
R2 : fn+r2(g1; 0)
R12 : fn+r12

(0; 0)

3
7777777775

Kn(g1) = max

2
4

I1 : pg11 Kn+c1(0) + (1¡ pg1

1 )fn+c1+r12(0; 0)
R2 : fn+r2(g1; 0)
R12 : fn+r12(0; 0)

3
5

Ln(g2) = max

2
4

I1 : pg22 Ln+c2(0) + (1¡ pg2

2 )fn+c2+r12(0; 0)
R2 : fn+r1(0; g2)
R12 : fn+r12(0; 0)

3
5

and
Mn = fn+r12(0; 0)

with boundary conditions for n > N given as

fn(g1; g2) = Kn(g1) = Ln(g2) = Mn = 0 8g1; g2

There are several questions that can be raised regarding the assumptions
of this model. First, the inspections are assumed to be perfect in that no
misdiagnoses are made. This is rarely the case in the real world. Varying
degrees of state imperfections can be represented via fuzzy modeling. Second,
the \working" state is rarely as good as the original new part and therefore the
inspection should tell to what degree the machine is working. This again can
be more realistically modeled as a fuzzy variable with the membership function
being a surrogate for the extent to which the machine is in a \working" order.
Finally, the probability distributions used may not be known or of a familiar
type and therefore may need to be replaced by possibility distributions. This
model also su®ers from the \curse of dimensionality" in that the state and
action spaces grow exponentially with the number of parts m in the system.

13.8 MAINTENANCE DECISIONS

Not all replacement decisions are limited to simply choosing to \keep" or \re-
place" the existing asset. Fortunately, the DP formulation is su±ciently general
to allow for other options. For example, a third option may be the \purchase
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of a used machine". Bellman describes the DP formulation of the replacement
model with the option to purchase a used machine as well as that of a model
with an \overhaul" option [Bellman and Dreyfus, 1962]. The overhaul option
can be done either in a general manner, where the cash °ows and other vari-
ables are functions of both the installation time and the overhaul time, or by
allowing the overhauled asset (t years old) to maintain the characteristics of a
younger asset (t0 < t years old).

Bellman's general model of overhauling machines is formulated in [Bellman
and Dreyfus, 1962]. We brie°y describe it below. To model overhauls, another
dimension is added to the problem. Let the functional equation be:

fN (t1; t2) = value at year N of the overall discounted return from a
machine of age t1, last overhauled at age t2, where an
optimal replacement policy is employed for the
remainder of the process.

(13.13)
Then the recurrence relation becomes:

fN (t1; t2) = max

2
4
R : ¡CN (0; 0) + SN (t1; t2)¡ P + ®fN+1(1; 0)
K : ¡CN (t1; t2) + ®fN+1(t1 + 1; t2)
O : ¡CN (t1; t2)¡ON (t1; t2) + ®fN+1(t1 + 1; t1)

3
5

(13.14)
where ON (t1; t2) is the cost of overhauling in year N a machine of age t1
last overhauled at age t2. Using fuzzy numbers to model the aggregate cash
°ows, overhaul costs, and salvage values increases the number of calculations
by a factor of 3. Thus the general complexity of the fuzzy version remains
unchanged from the traditional model.

Modeling an overhaul option in PMSAR can be done either by de¯ning
functions that relate an overhauled asset's aggregate cash °ows and salvage
value to its installation time and overhaul time or de¯ning challenging assets
that represent the costs and characteristics of an overhauled machine. By
de¯ning a function, an extra dimension is added to the model as above, while
de¯ning \overhaul" challengers keeps the solution technique the same as in the
original PMSAR.

We return to the example problem for the PMSAR above to illustrate a
maintenance option with an imprecise or vague e®ect. Suppose that the main-
tenance option is modeled as a \ghost" asset which is de¯ned as follows: The
purchase cost P 0 of the \ghost" asset a0 is a function of the cost of the mainte-
nance option on the asset a currently in place and the number of years n0 since
a was installed.

P 0 = ([0:15; 0:20; 0:25] ¢ Pa)(1:03)n
0
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where Pa is the purchase price of asset a. This particular function states that
the base maintenance cost is a fuzzy number that is [15%; 20%; 25%] of the
original cost of the asset with an increase of 3% per year since installation.
The result of the maintenance is also fuzzy, a [6%; 10%; 12%] reduction in the
original operating costs for the following year. The component cash °ows cor-
responding to this maintenance challenger a0 are a function of the time n0 that
the maintenance occurs as well as the original asset and its installation time.
Let us denote performing maintenance on the existing asset at period n as
(M;n). The resulting optimal maintenance and replacement policy for N = 15
then becomes:

(M; 0)(M; 1)
(1; 2)(M; 3)(M; 4)(M; 5)(M; 6)
(1; 7)(M; 8)(M; 9)(M; 10)(M; 11)
(2; 12)(M; 13)(M; 14)

with an optimal fuzzy present value FPV ?(15) = [25709:00; 40749:90; 54887:80].
This translates to performing maintenance on the current defender at periods 0
and 1, purchasing asset 1 at period 2 and performing maintenance on this asset
each period until asset 1 is purchased again in time 7. The maintenance at each
period continues on asset 1 until asset 2 is purchased at period 12. Maintenance
on asset 2 then performed at each remaining period. The fuzzy present value
with this maintenance option, in this example, has risen signi¯cantly.

13.9 SUMMARY

Probability theory has been used as the traditional approach for modeling un-
certainty in economic analysis. This is acceptable only to the extent that un-
certainty is satisfactorily equated with randomness. However, there exist other
types of uncertainty which are especially relevant to economic decision analysis.
Thus, there is a role to be played by nonprobabilistic uncertainty as shown in
this e®ort. Many approaches have been shown to be possible. A brief survey
of replacement analysis, focusing on the use of nonprobabilistic uncertainty, is
given. The use of triangular fuzzy numbers provides a compromise between
computational e±ciency and realistic modeling of the uncertainty. Thus, this
discussion emphasizes fuzzy numbers. In the extension to the economic life of
an asset model, the uncertainty in the parameters is explicitly modeled. By only
a three-fold increase in the number of computations, the optimal choice based
on the decision-maker's best estimates of these parameters is easily obtained.
The traditional deterministic models are a special case of this new possibilistic
model. In e®ect, PELAM performs multivariable sensitivity analysis on all the
uncertain parameters concurrently and incorporates this uncertainty into the
determination of the optimal decision. Bellman's DP model is also extended to
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use fuzzy numbers with similar bene¯ts. The bene¯ts for PMSAR are virtually
the same, except there is a greater increase in the number of computations due
to the vertex method. Contrast this with the large number of repetitions that
Monte-Carlo simulation requires, as well as the subjective interpretation of the
results, and this disadvantage is not too severe.

When probability distributions are not known, or when a stochastic model
is too di±cult to solve, fuzzy sets and possibility theory o®er an e±cient alter-
native in replacement analysis. There are a number of bene¯ts for modeling
the uncertainty in the replacement problem via fuzzy numbers. We outline a
few of them:

The use of fuzzy uncertainty may be more appropriate when modeling
systems with human subjectivity. The only existing technique in replace-
ment analysis that modeled general uncertainty in the replacement deci-
sion was a Monte-Carlo simulation method [Lohmann, 1986].

Creating a triangular distribution from the best, worst, and most likely
estimates of an expert is more appropriate for possibility theory than
probability theory due to the lack of probabilistic information.

The results of each model can be easily plotted to provide a graphical
representation of the e®ects of the uncertain parameters and can provide
this information without a signi¯cant increase in the computational com-
plexity. The algorithms are easily implemented on a personal computer.

The use of TFNs retains the triangular distribution throughout the so-
lution algorithm and conveniently shows the best, worst, and most likely
NPVs of each possible decision.

The use of fuzzy numbers corresponds to performing sensitivity analysis
on all uncertain parameters simultaneously, as well as identifying the
answer to the deterministic version of the problem which corresponds to
the modal value of each fuzzy number.

The models detailed here are limited to extensions of standard economic
decision-making techniques. They take a cost approach to determining the op-
timal replacement policy. Fuzzy sets allow other approaches, such as a fuzzy
control approach using IF-THEN rules. For instance, a maintenance or re-
placement decision may depend on several variables such as operating revenues,
operating costs, in°ation rate, technological age (asset's status as a current tech-
nology in the industry), chronological age, and numerous others. While no pre-
cise mathematical models of these more realistic situations, fuzzy sets de¯ned
on these linguistic variables could generate a fuzzy rulebase consisting of rules
such as the following two examples:
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IF operating revenues are MEDIUM AND operating costs are HIGH,
THEN preventive maintenance priority is MEDIUM.

IF in°ation rate is HIGH AND technological age is CUTTING EDGE
AND chronological age is YOUNG, THEN replacement priority is LOW.

This approach develops a maintenance and replacement policy based on prior-
ities which di®ers from the traditional NPV approach. These can be readily
solved to yield maintenance and replacement policies that are in many cases
intuitive and human-friendly. There are, of course, some limitations such as
those induced by fuzzi¯cation and defuzzi¯cation via standard tools. These
can however be ameliorated by recourse to optimal defuzzi¯cation strategies as
discussed by Esogbue and Song [Esogbue and Song, 1995; Esogbue and Song,
1996; Esogbue et al., 1996]. This method could also utilize some of the advances
in membership function generation such as reinforcement learning and neural
networks as well as other new techniques in fuzzy rulebase control.
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