
Approximate Policy Improvement for
Continuous Action Set-Point Regulation

Problems
A.O. Esogbue and W.E. Hearnes II

Intelligent Systems and Controls Laboratory
Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta GA 30332-0205

e-mail: aesogbue@isye.gatech.edu and wp46268@west-point.org

Abstract| Model-free control methods based on
classical dynamic programming approximation algo-
rithms are a fertile area of research. These methods
are generally for discrete state and action spaces.
This research proposes an algorithm for extend-
ing approximate policy iteration to continuous ac-
tion spaces by combining the derivative-free line
search methods of nonlinear optimization with pol-
icy improvement based on Q-learning using a dis-
crete subset of reference actions. The properties of
the proposed algorithm are discussed and two exam-
ple problems illustrate its applicability. Q-learning
algorithm are used to search a continuous action
space. The method reduces the computational ef-
fort required in many problems.

Keywords| Dynamic programming, policy itera-
tion, Q-learning, continuous action spaces, inverted
pendulum, power system stabilization.

I. Introduction

As real-world control problems become more
complex, the use of traditional control techniques
requiring mathematical models of the plant become
less appealing or appropriate. The motivation for
model-free intelligent control stems from the ability
of humans to determine e±cient and, sometimes,
near-optimal control of highly complex nonlinear
systems through online experience without a pri-
ori knowledge of the plant dynamics. Intelligent
controllers have several important advantages that
make them attractive for real-world applications.
These include higher robustness, shorter develop-
ment time, and less assumptions about the dynam-
ical behavior of the plant.

Approximate methods based on dynamic pro-
gramming (DP) are a fertile and ongoing area of
research for model-free intelligent control. Among
the major classes of algorithms are Sutton's tem-
poral di®erences (TD) [?], Watkin's Q-learning [?],
[?], and Baird's advantage updating [?]. These are

online versions of the policy improvement and suc-
cessive approximation algorithms in classical dy-
namic programming [?]. Considering reinforcement
learning can be formulated as a dynamic program,
a number of reinforcement learning controllers re-
ported in the literature, including [?], [?], have ap-
proximate DP-based learning algorithms.

Dynamic programming methods, including many
of the model-free algorithms, are generally based
on a ¯nite action space. Continuous state or action
spaces bring on the curse of dimensionality unless
some type of approximation is used. This paper
proposes an algorithm for approximating the op-
timal control policy for set-point regulation prob-
lems with continuous action spaces. It takes ad-
vantage of the property that the optimal policy is
usually found considerably quicker than the opti-
mal functional values in the Q-learning algorithm.
A derivative-free search algorithm determines an
improved policy during each policy improvement
phase. Convergence properties of the new algo-
rithm are discussed and two experimental control
problems show its practical applicability.

II. The Set-Point Regulation Problem

Set-point regulation problems, a subclass of ter-
minal control problems, require a process to be
driven to a desired ¯nal state, de¯ned as the set-
point, in an optimal manner according to some
scalar performance measure. This class includes
problems such as the inverted pendulum balancing
problem and the power system stabilization prob-
lem, both of which are used as practical examples
below.

We assume throughout that the system in ques-
tion is controllable. With a ¯nite number of states,
the dynamics of the system can be modeled via a

Markov process. While the transition probabilities
pij(a) may not be known, they are assumed to exist.
Since the process is controllable, the set-point s? is
accessible from any state i. Speci¯cally, pnis? > 0
for some n ¸ 0.

For clarity, we de¯ne the model of the set-point
regulation problem examined in this research. The
process to be controlled is described by a discrete-
time Markov chain P with discrete state space S
and continuous action space A, where S = S. Let
the unknown dynamics of the system be expressed
as

s(k + 1) = ¿ (s(k); a(k); w(k)) (1)

for k = 0; 1; : : : where s(k) 2 S is the state, a(k) 2
A is the action, and w(k) is the random disturbance
at time k. De¯ne the probability that s(k + 1) = j
when in s(k) = i and action a(k) is taken to be
pij(a(k)). Furthermore, let the immediate return
R : S£A! R for taking action a(k) in state s(k)
be bounded below by 0 and above by some integer
B.

For any given control policy ¼ : S ! A, de¯ne
this objective function as

V¼(i) = E¼

" 1X

k=0

°kR(s(k); a(k))js0 = i

#
8i (2)

and let
V (i) = inf¼V¼(i) 8i (3)

where ° 2 (0; 1) is a discount factor and E¼ is the
conditional expectation using policy ¼. V¼(i) rep-
resents the discounted expected total return using
policy ¼ and starting in state i. The objective func-
tion is de¯ned over an in¯nite horizon since the
set-point regulation problem is a terminal control
problem where the number of stages until the set-
point is reached is not ¯xed. Rather, it is dependent
upon the policy ¼. Therefore, with an appropri-
ate boundary condition of V (s?) = 0, the terminal
control problem is appropriately formulated. For-
mulating the relation as a dynamic program, the
functional equation becomes

V (i) = min
a2A

2
4R(i;a) + °

X

j2S

pij(a)V (j)

3
5 (4)

for all i which represents the minimum expected
discounted return when starting in state i and al-
ways following an optimal policy.

III. Policy Iteration Algorithms

Howard's classical policy improvement algorithm
[?] involves solving a system of linear equations for

the unknown values of V¼(i). Using these values,
a new policy ¼0 is determined that is a strict im-
provement for at least one state i. The convergence
of the algorithm is a direct result of the property
that an optimal stationary policy exists and there
can be only a ¯nite number of stationary policies.

In practice, the transition probabilities pij(a) re-
quired for Howard's algorithm may not be known.
Subsequently, model-free versions have been devel-
oped. In addition, if the action space is not ¯nite,
as in the case of a continuous action space, then the
convergence of the algorithm is not guaranteed.

Bradtke, et. al, derive some of the ¯rst conver-
gence results for adaptive policy iteration with con-
tinuous action spaces [?]. The linear-quadratic reg-
ulator (LQR) problem is well known in control the-
ory. The structure of the problem leads to some
elegant analytical results. Bradtke, et. al, exploit
some of the characteristics of the LQR problem to
derive an analytical policy improvement procedure.
Although the number of stationary policies is in¯-
nite, the algorithm converges to the optimal policy.
Unfortunately, these analytical results apply only
to LQR problems. In this research, we are inter-
ested in a broader class of control problems.

IV. Online Policy Iteration Via
Q-Learning

Dynamic programming solves two related funda-
mental problems: (1) Determination of the optimal
functional value V (i) for each state i, and (2) a
policy ¼? that achieves that value. In many control
problems, the optimal policy is the more important
part of the solution. The value of the functional
equation when using an optimal policy is not neces-
sarily required and, in many cases, online dynamic
programming algorithms such asQ-learning expend
additional computational e®ort to determine these
values.

Watkin's Q-learning algorithm is an online ver-
sion of the classical successive approximations al-
gorithm in DP [?]. The Q-values in the Q-learning
algorithm can be de¯ned so that they either learn
the functional values for the optimal policy ¼? with

Q(i; aj) = R(i; aj) + °
X

l2S

pil(aj)V (l) (5)

with

V (i) = min
j
Q(i; aj) (6)

or for a ¯xed policy ¼ with

Q(i;aj) = R(i; aj)+°
X

l2S

pil(aj)
X

h

»¼l (ah)Q(l; ah)

(7)
where »¼l (ah) is the probability of choosing action
ah in state l under policy ¼. Equation 7 reduces to
Equation 5 under the optimal stationary policy ¼?.

Just as there is a fundamental relationship be-
tween the optimal policy and the optimal functional
values in DP, there is also a fundamental relation-
ship between policy improvement and successive
approximation algorithms. Bertsekas and Tsitsik-
lis [?] highlight two parameterized algorithms, ¸-
policy and modi¯ed policy iteration, that show this
relationship.

This research proposes a type of uniform grid
search to approximate the Q(i; aj) function for
each state i and reduce the interval of uncertainty
containing the minimum of the functional. The
line search problem in nonlinear optimization is
the foundation of a number of optimization algo-
rithms [Bazaara, et al]. If the Q(¢; aj) functions
were strictly quasi-convex then a number of e±cient
derivative-free line search methods could be used
with guaranteed convergence. The Q(i; aj) func-
tions, however, are not necessarily strictly quasi-
convex, therefore a variation of the uniform search
method is used.

V. CAS Algorithm

The continuous action space (CAS) algorithm be-
gins with a representative subset aj ; j = 1; : : : ; A;
for each state i, spanning some interval of uncer-
tainty (IoU) regarding the location of the optimal
control action in the continuous action space. The
Q-learning algorithm determines the optimal policy
using only this action subset. Based on this policy,
the interval of uncertainty is reduced for selected
states, thereby adjusting the locations of the refer-
ence actions. As the CAS algorithm continues, the
intervals of uncertainty for each state are reduced
toward 0, centering on the optimal action in the
continuous action space, if certain assumptions are
maintained.

The general CAS algorithm is as follows:

1 Set boundary condition: V (s?) = 0.
2 Initialize aj for all states.
3 Set Q0(i; aj) = M À 0 8i; j.
4 Count := 0
5 while Count < Limit do
6 Perform an iteration of Q-learning.
7 if Policy doesn't change

8 Count := Count+ 1
9 else

10 Count := 0
11 ¯ od
12 Reduce IoU by ¯ < 1 around ¼(i) 8i
13 Repeat steps 3-12 until desired accuracy.

The choice of ¯, the threshold Limit, and the choice
of M all a®ect the rate of convergence. The prop-
erties are examined in the next section.

VI. Properties of CAS Algorithm

The key to the e±ciency of the CAS algorithm is
that the optimal policy can, in many cases, be de-
termined before the Q-learning algorithm converges
to the optimal functional values. Basing the pol-
icy improvement procedure on this information is
equivalent to waiting for the Q-learning algorithm
to converge.

The Q-values from Equation 5 are equivalent to
a positive stochastic dynamic program and, there-
fore, an optimal stationary policy exists [?]. A sta-
tionary policy is one that is nonrandomized and is
time-invariant. Our set-point regulation problem
is controllable and has an absorbing state that is
accessible by every other state, therefore, the esti-
mates will converge with probability 1: Qk(i; aj)!
Q(i; aj).

Proposition .1: Given a Markov system P with
an absorbing state and a unique optimal stationary
policy, there exists an ² > 0 su±ciently small such
that if the Q-learning algorithm converges to the
optimal values in k 2 N iterations then the optimal
policy is determined in k0 · k iterations.

The proof of Proposition .1 is omitted for brevity.
It provides only a weak theoretical upper bound on
the number of iterations until the optimal policy
is found. In practice, though, the optimal policy
may be found in signi¯cantly less iterations. For
example, consider a discrete approximation to the
inverted pendulum balancing problem. With the
objective to minimize the discounted sum of the
squared error from the set-point, the dynamic pro-
gramming functional equation becomes

V (i) = min
aj

"
(µ2 + x2) + °

X

l2S

pil(aj)V (l)

#
: (8)

The state space consists of 51£ 5£ 51£ 5 discrete
states for µ, ¢µ, x, and ¢x, respectively. Each
Q(s; a) value is arbitrarily initialized at some large
integer. Using a full backup for each iteration, 3401
iterations are necessary before the Q-values con-
verge to within ² = 0:0001 of the optimal functional

values. Yet, the algorithm determines the optimal
policy after only 36 iterations, as shown in Figure
1 which plots these policy changes during the 3401
iterations.

Fig. 1. Optimal policy found in considerably less iterations
than the optimal functional values in an inverted pen-
dulum balancing example.

The estimates of the Q(i; aj) values for each state
i serve as a guide for reducing the interval of un-
certainty. Initially, this interval is the entire ac-
tion space A. Each reduction is by a factor of ¯,
0 < ¯ < 1, and therefore the interval can be made
arbitrarily small using successive reductions. The
procedure that reduces the interval of uncertainty
for each state i is as follows:

1 Determine argminjQk(i; aj) 8i.
2 Reduce current IoU by ¯ for each i.
3 Center IoU on action in step 1.
4 Spread A reference actions uniformly in IoU.

Proposition .2: Apply the Q-learning algorithm
to estimate the Q(i; aj) values. From Proposition
.1, we have two possibly distinct times k0 and k.
The successive reduction procedure above produces
identical reductions in the interval of uncertainty at
both k0 and k.

Clearly, the successive reduction procedure is
based on argminjQk0(i;aj) and argminjQk(i; aj),
respectively, 8i. From Proposition .1, it follows that

argminjQk0(i; aj) = argminjQk(i; aj); 8i:

Therefore, the procedure produces identical reduc-
tions in the IoU at both k0 and k.

In order to use the successive reduction procedure
for guaranteed policy improvement, the Q(i; aj)

functions must be strictly quasi-convex in j. Specif-
ically, this is equivalent to a type of topological
nearness in the Q(i; aj) for all i such that if the
optimal action is a? then

kal ¡ a?k < kaj ¡ a?k

implies

jQ(i; al)¡Q(i; a?)j < jQ(i; aj)¡Q(i; a?)j

for j 6= l. This ensures that if some action is opti-
mal, then actions close to that optimal action are
better than actions further away.

Proposition .3: If the Q(i; aj) function is strictly
quasi-convex in j for all i then the successive re-
duction procedure generates a set a0j of A reference
actions for i such that

min
j
Q(i; a0j) · min

j
Q(i; aj):

The proof of this follows directly from the strictly
quasi-convex property of the Q-function and is
omitted here. As stated previously, this assump-
tion does not always hold but, even then, an adroit
choice of ¯ and A can achieve the desired result in
practice. This is evident in the example applica-
tions that follow.

The CAS algorithm converges to the optimal pol-
icy ¼? under the strictly quasi-convex assumption if
the successive reductions are applied to a particular
sequence of states.

Proposition .4: If the Q(i; aj) function is strictly
quasi-convex in j for all i then the successive reduc-
tion procedure can determine the optimal policy ¼?

for all states.
Again for brevity only, the outline of the proof is

given. The state space S can be divided into sub-
sets according to the expected number of actions
in the optimal control policy required to move the
process to the set-point. If the states that have only
one expected transition to the set-point have their
IoU's reduced ¯rst, then their optimal actions will
be found. By induction and Bellman's principle of
optimality, a similar case can be made for states
that are 2; 3; : : : ; z expected transitions away from
the set-point under an optimal policy. This gives
a theoretical convergence, but in practice, this di-
vision is not known a priori. Heuristic procedures
are thus used to approximate this partition.

VII. Experimental Application

The CAS-C algorithm is applied to two set-point
regulation applications. First, as a testbed control
problem, the inverted pendulum balancing problem

is examined. Second, the power system stabiliza-
tion problem, an underdetermined system, is in-
vestigated. Both are multiple-input/single-output
nonlinear control problems that are approximated
by a ¯ne discrete state space.

A. Inverted Pendulum Balancing

This control problem has four inputs: [µ, ¢µ, x,
¢x] and one output F . The objective is to balance
the pendulum at µ = 0± and keep the cart at x = 0.
With the functional equation de¯ned as in Equation
8 and the state space discretized into 51 £ 7 £ 51
£ 7 states, the CAS-C algorithm was run.

For a standard to compare the CAS-C algorithm,
the Q-learning algorithm was run with 101 discrete
actions to give a ¯ne approximation to a contin-
uous action space. This requires 12,872,349 Q-
values. After 105 full-backup iterations, the Q-
learning algorithm converged to within ² = 0:00001
of the optimal functional values for each state-
action pair. This required over 1,351,596,645 Q-
value updates. With the CAS-C algorithm, only
A = 7 actions were used with a reduction factor
¯ = 0:8. The CAS-C required 437 full-backup iter-
ations but, with the reduced action space, it only
required 389,866,491 Q-value updates. This is a
reduction of over 70% in the computational e®ort.

The di®erences in the optimal trajectories be-
tween the ideal and the CAS-C approximation are
shown in Figures 2 and 3. Since the strictly quasi-
convex assumption may not hold, we are not guar-
anteed convergence. However, a choice of a higher ¯
may increase our probability of ¯nding the optimal
action but at the price of increased computational
e®ort.

B. Power System Stabilization

The power system stabilization problems has six
state variables, only two of which can be measured.
Therefore the system is only partially observable.
In this experiment, the control system consists of
two inputs: [!, ¢!] and one output u. The stabi-
lization system is composed of a synchronous ma-
chine with an exciter and a stabilizer connected to
an in¯nite bus. The dynamics of the synchronous
machine (used for simulation only) are represented
by a linearized incremental model [?]. The objec-
tive is to dampen the oscillations [!, ¢!] under
various load changes. With the functional equation
de¯ned

V (i) = min
aj

"
!2 + °

X

l2S

pil(aj)V (l)

#
: (9)

Fig. 2. Error in optimal trajectory of µ over time for initial
state [10,0].

Fig. 3. Error in optimal trajectory of x over time for initial
state [10,0].

and the state space discretized into 101 £ 51 states,
the CAS-C algorithm was run.

The inverted pendulum example above was run
using full backups, which required knowledge of the
state transitions. This was done for demonstration
purposes. In the power system stabilization prob-
lem, sample backups are used to learn a model-free
control law. Because the system is only partially
observable with the four unobservable state vari-
ables taking on independent values, comparisons
to an optimal policy cannot be made. The num-
ber of reference control actions were A = 7 with
¯ = 0:8 and 16 reductions of the IoU were per-

formed. The stabilization of the system after the
completion of learning when presented with a load
change of 0:05pu is shown in Figure 4. The control
sequence is shown in Figure 5.

Fig. 4. Trajectory of ! over time for initial state [0.01,0].

Fig. 5. Learned control policy of u over time for initial state
[0.01,0].

Additional research into the sample backup ap-
proach and its e®ect on the number of Q-value up-
dates, ¯, and A is underway in our laboratory.

VIII. Conclusions

The CAS-C algorithm combines the derivative-
free line search methods of nonlinear optimization
with online dynamic programming to create an ap-
proximate policy iteration procedure to estimate an

optimal control law. The convergence properties
of the Q-learning algorithm are used to search a
continuous action space using a discrete subset of
reference actions. The reduction in computational
e®ort over a ¯ne discrete approximation is evident.
Example applications are shown for both full and
sample backups.

Under the assumption of strict quasi-convexity,
the policy is indeed improved in each successive re-
duction step. If the reductions in the intervals of
uncertainty are applied systematically, convergence
to the optimal control action is assured. In prac-
tical applications, where the assumption may not
hold, an adroit choice of ¯ and A can increase the
probability of ¯nding the optimal action.

Research is currently underway in our laboratory
into heuristics for ensuring a proper sequence of in-
terval of uncertainty reductions, a non-uniformly
distributed set of reference actions, and a fuzzy ap-
proximation scheme for extending this to continu-
ous state spaces.

