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Abstract|In recent years there has been an explosion of
research into intelligent control. Intelligent control refers to
controllers that can analyze their performance and make
necessary changes to their behavior in order to satisfy cer-
tain prede¯ned control goals. This paper describes a self-
learning controller model that can e±ciently learn the con-
trol law for complex systems through reinforcement learn-
ing techniques and dynamic programming-like algorithms.
The controller is applied to a class of problems called gen-
eral set-point regulator problems in which the objective
is to drive the system to the set-point while optimizing
some performance objective function, making no a priori
assumptions about the dynamics of the plant or its optimal
trajectory. The relevant tasks for a self-learning controller
are discussed. Learning is accomplished via incremental,
online dynamic programming-like algorithms. Both tem-
poral di®erences and Q-learning are used in the learning
algorithm. Experimental results with both are reported
on the inverted pendulum balancing problem, the power
system stabilization problem, and the tethered satellite
system retrieval problem.

Keywords| Fuzzy control, reinforcement learning, dy-
namic programming, temporal di®erences, Q-learning, in-
verted pendulum, power system stabilization, tethered
satellite system retrieval.

I. Introduction

As control problems become more complex in real-
world applications, the use of traditional control tech-
niques requiring mathematical models of the plant be-
comes more di±cult to apply. In recent years there has
been an explosion of research into controllers that can
analyze their performance and make necessary changes
to their behavior in order to satisfy certain prede¯ned
control goals [2], [4], [10], [19], [20]. The advantage of
such a controller becomes apparent when the dynamics
of the plant are either unknown or are too complex to
solve analytically.

Intelligent controllers have several important advan-
tages, such as higher robustness, shorter development
time, and less assumptions about the dynamical behav-
ior of the plant, that make them attractive for application
to real-world problems [10], [11], [19]. Fuzzy set theory
provides a mathematical framework for modeling vague-
ness and imprecision. Neural networks have the ability
to learn complex mappings, generalize information, and
classify inputs. Hybrid controllers utilize the advantages
of each, as well as other novel techniques, creating a pow-

erful tool for intelligent control.
The controller model described in this paper is di-

rected toward nonlinear set-point regulator control prob-
lems that have either unknown or uncertain dynamics.
The state and control spaces are assumed continuous,
although application to discrete variable problems have
been investigated [20]. No a priori information about
the optimal control policy is assumed. The only external
feedback required is the noti¯cation that the system has
either reached a failure state or a success state.

II. The General Set-Point Regulator Problem

Set-point regulator problems require that the process
be driven to a desired ¯nal state (the set-point) in a man-
ner that optimizes some performance measure. The for-
mal de¯nition of the class of problems investigated is pre-
sented in this section [20]. Let X be the state space and
U be the control space for a process and xk 2 X and
uk 2 U be the state and control vectors at time step k,
respectively. Let the initial state be de¯ned as xinitial,
the set-point be x¯nal, and T be the (possibly random)
time at which the process reaches the set-point. The
problem is de¯ned as
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(u0;:::;uT )2UT

©
E
£
J(xinitial)

¤ª
=

(
E

"
TX

k=1

pk

#)

(II.1)
subject to

xk+1 = f (xk;uk; wk) (II.2)

x0 = xinitial (II.3)

xT = x¯nal (II.4)

pk = p (xk¡1;uk¡1;xk) (II.5)

xk 2 X (II.6)

where f (xk;uk; wk) in Equation II.2 is the (possi-
bly random) state transition function for the process
and p (xk¡1;uk¡1;xk) in Equation II.5 is some perfor-
mance measure that is measurable at each time step
k, such as the integral of the absolute error (IAE). If
u?
¡
xinitial;x¯nal

¢
= (u0;u1; : : : ;uT¡1) is the optimal

control policy for the above problem then by Bellman's



principal of optimality if state xk occurs with positive
probability, then (uk;uk+1; : : : ;uT¡1) is the optimal pol-
icy for the subproblem where xinitial = xk. This impor-
tant feature of the problem allows for the use of e±cient
dynamic programming-like algorithms.

Formulating the above as a dynamic program, let the
state be the state vector x 2 X, the stage be the time
step k = f0; 1; : : : ; Tg, the decision variable be the con-
trol vector u 2 U, the immediate reward at stage k
while in state xk and taking action uk be the scalar
function p(xk;uk), and the (possibly random) transi-
tion function be f (xk;uk; wk). For a one-stage problem
(f (x0;u0; w0) = x¯nal) the functional equation becomes

F0 (x0) = optu02U fE [p(x0;u0) + F1 (f (x0;u0; w0))]g
= optu02U fE [p(xk;uk)]g+ F1

¡
x¯nal

¢

(II.7)
where F1

¡
x¯nal

¢
is a boundary condition. Generalizing

to a multistage process gives

Fk (xk) = optuk2U fE [p(xk;uk) + Fk+1 (f (xk;uk; wk))]g
(II.8)

Since f (xk;uk; wk) is not known, incremental online
learning algorithms such as Sutton's temporal di®erences
(TD) method [22] or Watkin's Q-Learning method [23],
[24] must be used to approximate the optimal control
policy.

III. The Self-Learning Fuzzy Controller

In ongoing research in our laboratory, we have devel-
oped, investigated, and applied various versions of intelli-
gent controllers to a variety of problems of interest to our
funding agencies [9], [10], [11], [12], [13]. Our approach
can be broken down into a set of subtasks:

1. Develop an e±cient representation of the state space
X and control space U.

2. Provide a \good" internal reinforcement signal
r̂(x;u; k) based on the current level of learning at
time step k.

3. Search the control space U for the \best" control
action u for each state x visited during the learning
phase(s).
² Determine a logical and e±cient method for assign-

ing credit for success and failure and use this to
update the internal reinforcement algorithm.

² Determine the \best" control action u? based on
Ĝ(x;u; k) and any possible constraints ~C(k).

4. Generalize the current state of learning|i.e., the
current learned control law F̂ (x; k) at time step k|
to the entire state space X.

5. Determine a method of implementing goals ~G(k)
in order to approach optimality during the learning
phase(s).

E±cient State and Control Space Representation:
If X and U are su±ciently large then the \curse of di-
mensionality" arises and some type of generalization is

required in order to keep the learning problem tractable.
Fuzzy controllers possess the ability to e±ciently approx-
imate input-output mapping functions by reducing the
precision of the state and control variables and their rela-
tionships. Borrowing from cluster analysis, one can parti-
tion the state space into a prede¯ned set of fuzzy clusters
[8]. A network of nodes discretizes X and U into n and
m fuzzy subsets, respectively, de¯ned by gaussian mem-
bership functions centered around a prototype member
of the fuzzy set (see Figure III.1 below) [10], [20].

Fig. III.1. Example of the fuzzy discretization of the 2-dimensional
state space for the inverted pendulum problem with 25 fuzzy
subsets. The subset centers are marked with `*'.

Any state x 2 X can be described by an n-element vec-
tor of membership function values for each of the n fuzzy
subsets. This approach bypasses the geometric increase
in the number of rules as state variables are added since
the number of nodes represent the number of fuzzy rules.

Internal Reinforcement Signal: A \good" internal
reinforcement signal r̂(x;u; k) based on the current level
of learning at time step k is required. Several DP-based
algorithms are used to learn real-time control strategies,
including Watkin's Q-learning algorithm and Sutton's
temporal di®erences [1]. In Markovian environments,
both Sutton's temporal di®erences (TD) and Watkin's
Q-learning are approximations to dynamic programming
(DP). Using stochastic approximation theory, it is shown
that both of these algorithms belong to a general class of
convergent algorithms.

In our TD implementation a current prediction func-
tion value pk(i) for i 2 f1; : : : ; ng is associated with each
of the n fuzzy subsets of the state space that represents
the prediction of the `expected' degree of success for the
controller when closest to node i at time k [10], [20].
Thus, r̂(x;u; k) is a function of the change in the pre-
diction function values between two consecutive nodes|
e.g., if the process moves from being nearest node i to
being nearest node j then r̂(x;u; k) = h (pk(j)¡ pk(i)).
In addition, pk(j) = 1 if the process moved within a spec-



i¯ed neighborhood of the set-point and pk(j) = ¡1 if the
process moved outside the state space boundaries. Thus,

r̂(x;u; k) =

8
<
:
h (1¡ pk(Nk)) if success
h (¡1¡ pk(Nk)) if failure
h (pk(Nk+1)¡ pk(Nk)) otherwise

(III.9)
where Nk 2 f1; : : : ; ng represents the fuzzy subset of the
state space with the highest membership function value
for state xk. The function h(¢) may be used to relate the
reinforcement signal with the membership function value
of x in Nk.

In the Q-learning implementation a value Qk(x;u) is
associated with each of the n £ m state-action pairs.
These Q-values represent an estimate of the functional
equation Fk (xk) in Equation II.8 in the sense that
Fk (xk) = optuk2U fQk(xk;uk)g. The chosen perfor-
mance measure is the integral of the absolute error (IAE)
thus optuk2U fQk(xk;uk)g represents the minimal IAE
when in state xk and following the optimal control pol-
icy to x¯nal. Thus, the internal reinforcement signal
r̂(x;u; k) is the IAE at time step k,

r̂(x;u; k) =

½
M if failure
AE

³
xk;xset-point

´
otherwise

(III.10)
where M is some su±ciently large number and
AE(xk;xset-point) is a scalar function representing the

instantaneous absolute error between xk and the set-
point.

Systematic Search of the Control Space: Searching
the control space U for the \best" control action u for
each state x visited during the learning phase(s) is vital
to the overall learning e±ciency of the controller algo-
rithm. In the TD implementation the controller searches
a subset of the control space U stochastically. During
the learning phase probabilities are used to select a con-
trol action u whenever a new fuzzy subset of the state
space has the highest membership function value|i.e.,
N(xk+1) 6= N(xk). The internal reinforcement signal
from Equation III.9 is used to increase or decrease the
probability of a control action uc, c 2 f1; : : : ;mg being
chosen at that node in the future. In the Q-learning im-
plementation, the probabilities remained equal and con-
stant for each state-action pair in order to back up the
functional equation values similar to asynchronous DP
[1]. Both TD and Q-learning methods implicitly learn the
state transition information via the update algorithms [1],
[20], [22]. The \best" control action u? for a particular
fuzzy subset of the state space is identi¯ed by a high
probability of being chosen when near that prototypical
state in TD and by the lowest Q-value in Q-learning.

Generalized Learning: The current state of learning
must be generalized to the entire state space X. Assum-
ing that there is some optimal control law F ?(x), the

goal is for F̂ (x; k) to converge to F ?(x) as k ! 1. Be-

cause of the high-dimensionality of the state and control
spaces, all the learned knowledge approximating F ?(x) is
stored in the learned membership functions for the n state
nodes and m control nodes. This information is used to
determine F̂ (x; k) through the use of fuzzy inference and
defuzzi¯cation techniques. The use of fuzzy set theory is
an e±cient method, though careful consideration must
be taken in the choice of the inference/defuzzi¯cation
method since it has a dramatic impact on the resulting
control law F̂ (x; k).

Implementing Goals: The last task is to determine
a method of implementing goals ~G(k) in order to ap-
proach optimality during the learning phase(s). These
goals may be in the class of performance measures and
give a benchmark to judge the controller by. Using dy-
namic programming-like algorithms such as Q-learning
allows for goals such as minimize the IAE to the set-point
to be approximated in an incremental fashion. Thus,
the learning algorithm will converge to near-optimal val-
ues for each of the n nodes in X and the fuzzy infer-
ence/defuzzi¯cation methods generalize this near-optimal
information to the rest of X.

IV. Experimental Results

The following applications illustrate the capabilities of
the controller. All experiments were run on PCs using 32-
bit DOS programs developed with the Borland C/C++
compiler. We have shown in previous research [9] that
the choice of language and platform have a signi¯cant
e®ect on the resulting control law learned when using re-
inforcement learning techniques that learn incrementally
from experience.

A. Inverted Pendulum Balancing

A.1 Model of Process

A common benchmark problem for nonlinear con-
trollers is the inverted pendulum problem. It is one of
the simplest inherently unstable systems [20] and has a
broad base for comparison throughout the literature. The
system is described as follows:

Inputs: State vector|x = [µ;¢µ].

Outputs: Force applied (in Newtons)|u = [F ] where
F > 0 denotes a force applied in the positive x direction.

Equations of Motion: These equations serve only to
simulate the system and are not used in the derivation of
the control law:

Äµ =
g sin µ + cos µ

³
¡F¡mpl _µ2 sin µ+¹psgn( _x)

mp+mc

´
¡ ¹p _µ

mpl

l
³

4
3
¡ mp cos2 µ

mp+mc

´

(IV.11)

Äx =
F +mpl

³
_µ2 sin µ ¡ Äµ cos µ

´
¡ ¹csgn ( _x)

mp +mc
(IV.12)

where the variables are de¯ned as



g acceleration due to gravity
mc mass of the cart (kg)
mp mass of the pole (kg)
l half-length of pole (m)
¹c coe±cient of friction for cart (N)
¹p coe±cient of friction for pole (N)

with values shown in Table I.

g = 9:8m/s
2

mc = 1:0kg
mp = 0:1kg l = 0:5m
¹c = 0:0N ¹p = 0:0N

TABLE I

Parameters of Inverted Pendulum System Simulation.

Success and Failure: The setpoint for the inverted pen-
dulum problem is [0; 0]. Failure occurs at any of the fol-
lowing conditions:

j µ j > 12±

j ¢µ j > 25±/s

A.2 Controller Performance

The inverted pendulum experiments were replicated
using various initial random number seeds. The learn-
ing algorithm was allowed to continue online for 50,000
time steps of 0.01 seconds each. Using the TD method for
the learning algorithm, the control surface for one experi-
ment is shown in Figure IV.2 and the resulting trajectory
from initial state [10; 0] is shown in Figure IV.3. Using

Fig. IV.2. Control surface using TD-based controller on the in-
verted pendulum.

the Q-learning method for the learning algorithm, the
objective is to minimize IAE via Q-learning. The control
surface for one experiment is shown in Figure IV.4 and
the resulting trajectory from initial state [10; 0] is shown
in Figure IV.5.

Fig. IV.3. Transient response using TD-based controller on the
inverted pendulum.

Fig. IV.4. Control surface using Q-learning-based controller on the
inverted pendulum.

Fig. IV.5. Transient response using Q-learning-based controller on
the inverted pendulum.



B. Power System Stabilization

B.1 Model of Process

The power system stabilization problem represents an
underdetermined system that can be approached as ei-
ther a multiple-input/single-output (MISO) or multiple-
input/multiple-output (MIMO) control problem [13],
[14], [15], [16], [18], [21]. The system considered here is
composed of a synchronous machine with an exciter and
a stabilizer connected to an in¯nite bus. The dynamics
of the synchronous machine can be expressed as follows
using the linearized incremental model [17]. The system
is described as follows:

Inputs: State vector|x = [!;¢!].

Outputs: Control voltage|u = [u].

Equations of Motion: These equations serve only to
simulate the system and are not used in the derivation of
the control law:

¢ _! =
1

M
(¢Tm ¡¢Te ¡

¢TL ¡D¢!) (IV.13)

¢ _± = 377¢! (IV.14)

¢Te = Ke¢± +K2¢eq (IV.15)

¢ _eq =
1

K3Tde
(K3¢efd ¡

K3K4¢± ¡¢eq) (IV.16)

¢Vt = K5¢± +K6¢eq (IV.17)

¢ _Vf =
1

TF
(Kf¢ _efd ¡¢VF ) (IV.18)

¢ _efd =
1

TE
(¢VA ¡KE¢efd) (IV.19)

¢ _VA =
1

TA
(KA¢Vref ¡KA¢VF +KAu¡

KAK6¢eq ¡KAK5¢± ¡¢VA) (IV.20)

j u j · umax (IV.21)

where

Vref constant reference input voltage
¢Vt terminal voltage change,
¢Vo in¯nite bus voltage change
¢efd equivalent excitation voltage change
¢eq q-axis component voltage behind

transient reactance change
¢VF stabilizing transformer voltage change
u stabilizer output
¢Tm mechanical input change
¢Te energy conversion torque change
¢TL load demand change
¢± torque angle deviation,
¢! angular velocity deviation
KA;KE voltage regulator gains
TA; TE voltage regulator time constants
KF stabilizing transformer gain

TF stabilizing transformer time constant
K1; : : : ;K6 constants of the linearized

model of synchronous machine
Tdo d-axis transient open circuit

time constant
M inertia coe±cient
D damping coe±cient
Ts sampling period

with values for the above parameters given in Table II
below.

K1 = 1:4479 K2 = 1:3174 K3 = 0:3072
K4 = 1:8050 K5 = 0:0294 K6 = 0:5257
KA = 400 TF = 1:0 TA = 0:05
D = 0 Tdo = 5:9 KE = ¡0:17
M = 4:74 TE = 0:95 KF = 0:025
¢Tm = 0 ¢Vref = 0 Ts = 0:01

TABLE II

Parameters of Power System Simulation.

B.2 Controller Performance

The power system stabilization experiments were repli-
cated using various initial random number seeds. The
learning algorithm was allowed to continue online for
250,000 time steps of 0.01 seconds each. Using the TD
method for the learning algorithm, the control surface for
one experiment is shown in Figure IV.6 and the resulting
trajectory from initial state [0; 0] is shown in Figure IV.7.

Fig. IV.6. Control surface using TD-based controller on the power
system stabilization problem.



Fig. IV.7. Transient response using TD-based controller on the
power system stabilization problem.

C. Tethered Satellite System Retrieval

C.1 Model of Process

The tethered satellite system problem represents a
highly nonlinear control problem with a ¯ve state vari-
ables, which is considerably more than the usual test
problem found in the literature. A tethered system is any
two or more bodies connected by a long thin structure.
The system focused on in this example is the deployment,
station-keeping, and retrieval of a target satellite from the
Space Shuttle. With a ¯xed-length tether for systems in
the `station-keeping' phase, the equations of motion are
still complex. With a variable length tether|i.e., for sys-
tems in the deployment or retrieval phase|the equations
of motion are further complicated by time-varying coe±-
cients. The system is described as follows:

Inputs: State vector|x =
h
µ; _µ; Á; _Á; l

i
.

Outputs: Tether length rate|u =
h

_l
i
.

Equations of Motion: The model used in our simula-
tion is a simpli¯cation of the actual dynamics [6]. There
are two coordinate systems in the model|the orbital axes
and the tether axes. The orbital axes, XY Z, are such
that the positive Z direction points to the center of the
Earth, the positive X axis points in the direction of the
trajectory, and thus the Y axis is perpendicular to the
XZ plane. The tether axes, xyz, are such that the z axis
is aligned with the tether and have the same origin as
XY Z. The system attitude is described by
² In-plane motion or pitch: Rotation µ about the Y

axis.
² Out-of-plane motion or roll: Rotation Á about the

instantaneous X axis.
These equations serve only to simulate the system and
are not used in the derivation of the control law:

Qµ(t) =
³
Ms +

mc

3

´
l2
³

Äµ ¡ Äµp

´
c2Á

¡2
³
Ms +

mc

3

´
l2
³

_µ ¡ _µp

´
_ÁsÁcÁ

+3
³
Ms +

mc

3

´
l2
µ
¹E
R2
o

¶
c2ÁsÁcµ

+2
³
Ms +

mc

2

´
l _l
³

_µ ¡ _µp

´
c2Á (IV.22)

QÁ(t) =
³
Ms +

mc

3

´
l2
³

_µ ¡ _µp

´2

sÁcÁ

+
³
Ms +

mc

3

´
l2 ÄÁ

+3
³
Ms +

mc

3

´
l2
µ
¹E
R2
o

¶
c2µsÁcÁ

+2
³
Ms +

mc

2

´
l _l _Á (IV.23)

where sÁ; sµ; cÁ and cµ are the sin and cosine functions
of the respective state variables, Ms and mc are the sub-
satellite and instantaneous tether mass, QÁ and Qµ are
generalized external forces, Ro is the orbit radius, µp is
the true anomaly and ¹E is the Earth gravitational con-
stant. The values for the parameters used in the simula-
tion are

Ms = 150kg ½A = 0:0015kg/m

TABLE III

Parameters of Tethered Satellite System Simulation.

The control variable is the deployed tether length rate,
_l. The state vector is de¯ned as

~X = fx1; x2; x3; x4; x5gT ´
n
µ; _µ; Á; _Á; l

oT
: (IV.24)

C.2 Controller Performance

The tethered satellite system experiments were repli-
cated using various initial random number seeds. The
learning algorithm was allowed to continue online for
500,000 time steps of 1 second each. The controller per-
formed satisfactorily in these preliminary experiments in
that it learned to retrieve the satellite from 100km to al-
most 10km before failure. The physical characteristics
of the system make the retrieval phase near the Shuttle
very nonlinear and dangerous to the crew. Using the TD
method for the learning algorithm, the controller learned
the characteristic of the optimal control, namely the `¯sh-
ing' motion of sending the satellite out and then reeling
it back in. The control variable during retrieval is shown
in Figure IV.8 and the resulting tether length starting at
100km is shown in Figure IV.9.

V. Discussion

This controller possesses the capability to learn the
control laws to various set-point regulator problems of
practical interest. The inverted pendulum provides a
common benchmark and the power system stabilization
problem and tethered satellite system retrieval problem
are of practical interest. Both TD and Q-learning are use-
ful tools for learning the control law online. Q-learning



Fig. IV.8. Control variable (length) during the retrieval of the
satellite.

Fig. IV.9. Tether length during the retrieval of the satellite.

provides the ability to incorporate performance measures
as goals (such as minimizing IAE) and thereby a method
of learning some type of near-optimal control. Research
into various tools for the enhancement of this controller,
especially the learning phase, is in progress
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