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Abstract

The convergence properties for reinforcement learning approaches such as temporal dif-
ferences and Q-learning have been established under moderate assumptions for discrete state
and action spaces. In practice, however, many systems have either continuous action spaces
or a large number of discrete elements. This paper presents an approximate dynamic pro-
gramming approach to reinforcement learning for continuous action set-point regulator prob-
lems which learns near-optimal control policies based on scalar performance measures. The
Continuous Action Space (CAS) algorithm uses derivative-free line search methods to obtain
the optimal action in the continuous space. The theoretical convergence properties of the
algorithm are presented. Several heuristic stopping criteria are investigated and practical ap-
plication is illustrated on two example problems{the inverted pendulum balancing problem
and the power system stabilization problem.

1 Introduction

As control problems in real-world applications become more complex, the use of traditional
analytical and statistical control techniques requiring mathematical models of the plant becomes

less appealing and appropriate. In many cases, the assumption of certainty in the resultant
models is made not so much for validity but the need to obtain simpler and more readily
solvable formulations.

If a model of the system is known, then traditional well-developed theories of optimal control
or adaptive control may be used. Without a reliable analytic model, however, these methods may
not be adequate and a model-free approach is required. Model-free techniques learn the control
law through either supervised or unsupervised means. Supervised learning requires some sort of
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a teacher or critic to provide the desired response at each time period. In some cases, however, an
expert or quantitative input-output training data may be unavailable. Consequently, model-free
control methods that can learn a control policy for a complex system through online experience
have recently been proposed [1, 2, 3, 9, 10, 14, 17, 18]. These model-free reinforcement learning
methods are increasingly being used as capable and potent learning algorithms in intelligent
autonomous systems.

Reinforcement learning systems form e®ective control policies online through a systematic
search of the action space in an environment which is possibly dynamic. Two major approaches

to model-free reinforcement learning{speci¯cally Sutton's method of temporal di®erences (TD)
[17] and Watkin's Q-learning algorithm [18]{are online versions of classical dynamic program-
ming approximation methods. Convergence properties for these algorithms have been derived
for discrete state and action spaces [19, 4, 1]. In practice, however, many processes to be con-
trolled have either continuous action spaces or a large number of discrete elements. Examples
include stabilizing a power system under a load, controlling a multi-degree of freedom robot arm
manipulator, and retrieving a tethered satellite into a spacecraft.

This paper presents an approximate dynamic programming approach to reinforcement learn-
ing for continuous action set-point regulator problems which learns near-optimal control policies
based on scalar performance measures. The set-point regulation problem is reviewed in Section
2. The continuous action space (CAS) algorithm, developed in Section 3.1, uses derivative-free
line search methods to obtain the optimal action in the continuous space using a dynamic dis-
crete subset of the state space. Theoretical convergence properties and computational aspects
of the algorithms are investigated in Section 3.2. The approach is then illustrated in Section 4

on two example set-point regulator systems{the inverted pendulum balancing problem and the
power system stabilization problem.

2 The Set-Point Regulator Problem

We restrict our attention to the general class of set-point regulator problems. In these problems,
a goal state, or set-point s?, is de¯ned. The objective is to drive the system from any initial
state s 2 S to the set-point s? in an optimal manner with respect to some scalar return function.

2.1 Formulation

Consider a possibly stochastic dynamical system with scalar returns. The set of all possible
states is represented by S. In order to control the system P , some set of possible decisions or

actions must also be available. The set of all possible actions is represented by A. The state
of the system at time step k is denoted generally by the m-vector s(k) 2 S. The action taken
at time step k is the n-vector a(k) 2 A. The output state s(k + 1) is de¯ned by the transition
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function
s(k + 1) = ¿ (s(k);a(k); !(k)) (1)

where k = 0; 1; : : : and !(k) is some random disturbance. Let the probability that s(k + 1) = j
when s(k) = i and a(k) = a be pij(a).

We restrict our investigation to policies that are time-invariant. Therefore, for any given

control policy ¼ : S ! A, de¯ne the control objective function for an in¯nite horizon problem
as

V¼(s) = E¼

" 1X

k=0
°kR(s(k); a(k))js(0) = s

#
8s 2 S (2)

and let
V (s) = inf¼V¼(s) 8s 2 S (3)

where ° 2 [0; 1) is a discount factor and E¼ is the conditional expectation using policy ¼. V¼(i)
represents the expected discounted total return using policy ¼ and starting in state s. A policy
¼? is °-optimal if

V¼(s) = V (s) 8s 2 S: (4)

Formulating the optimal control problem as a dynamic program, the functional equation becomes

V (s) = min
a2A

2
4R(s;a) + °

X

s02S
pss0(a)V (s0)

3
5 8s 2 S (5)

which represents the minimum expected discounted return when starting in state s and always

following an optimal policy.
The existence of an optimal stationary policy is guaranteed for the discounted case if the

return function R(s;a) is bounded below by 0 and above by some number B for all s;a [15]. If
¼ is the stationary policy that chooses in state i the action minimizing

R(i; a) + °
1X

j=0
pij(a)V (j) (6)

then ¼ is °-optimal [7].

2.2 Assumptions

The above formulation encompasses a variety of performance criteria including the popular
performance minimization measures, such as sum of squared error (SSE), for reinforcement

learning problems. For the application of the proposed algorithms, the following assumptions
are made:

Assumption 2.1 The return, R(i; a), for action a taken in state i is determined immediately
or in some ¯xed time period. Further, R(i; a) is bounded below by 0 and above by some ¯nite
number B.
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Assumption 2.2 The system is controllable. For every state s, there exists a sequence of
actions such that the system reaches s? in ¯nite time with probability 1.

These two assumptions ensure that there exists a policy ¼ such that V¼(s) <1 for all s 2 S.

Assumption 2.3 Multiple trials can be run on the system with both success and failure.

Approximate dynamic programming methods rely on repeated experimental runs. Systems must
be allowed to experience both success and failure without damaging the plant.

Assumption 2.4 The transition function ¿(s;a; !) is not known. Subsequently, the transition
probability, pij(a), from state i to state j when action a is taken is not known.

The set-point regulation problem is a terminal control problem where the number of stages
until the set-point is reached is not ¯xed. Rather, it is dependent upon the policy ¼. Therefore,
the objective function is de¯ned as in (5) over an in¯nite horizon. With an appropriate boundary

condition of V (s?) = 0, the problem is appropriately formulated.

3 Learning Optimal Continuous Actions

Dynamic programming determines the optimal solution to a variety of multi-stage decision prob-

lems by taking advantage of recurring imbedded subproblems, commonly referred to as Bellman's
principle of optimality. In doing so, dynamic programming solves two related fundamental prob-
lems:

1. Determination of the optimal functional value V (i) for each state i.

2. Determination of a policy ¼? that achieves that value.

In many control problems, the optimal policy is the more important, and oftentimes the more

readily available, part of the solution. The value of the functional equation when using an
optimal policy may not necessarily be required. Unlike classical dynamic programming, in
approximate dynamic programming the optimal policy and the optimal functional values are
not necessarily determined in an identical computational e®ort. This key property is exploited
in the Continuous Action Space (CAS) algorithm below.

Temporal di®erences and Q-learning, which have proved e®ective in online control problems,
are based on ¯nite state and action spaces. However, when either space is in¯nite their conver-

gence is not necessarily guaranteed. The controller which we have proposed in [8] uses Q-learning
as the evaluator for a discrete subset of actions within the continuous action space. We note
that Watkin's Q-learning algorithm is an online version of successive approximations [18] which
learns the particular value, termed the Q-value, of taking a speci¯c action in a particular state.
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The Q-values in the Q-learning algorithm may be de¯ned so that they either learn the functional
values for the optimal policy ¼? with

Q(i; a) = R(i; a) + °
SX

j=1
pij(a)V (j) (7)

and
V (i) = min

j
Q(i; aj) (8)

or for a ¯xed policy ¼ with

Q(i; a) = R(i; a) + °
X

j2S
pij(a)

X

h
»¼j (h)Q(j; h) (9)

where »¼j (h) is the probability of choosing action h in state j using policy ¼. Under the optimal
stationary policy ¼?, (9) reduces to (7). In Assumption 2.4 the transition probabilities pij(a) are

not known. The Q-values for each state-action pair are estimated by Qn(i; a) with the update
equation

Qn+1(i; a) = ®Qn(i; a) + (1¡ ®)
·
R(i; a) + °min

h
fQn(j; h)g

¸
(10)

for (7) and

Qn+1(i; a) = ®Qn(i; a) + (1¡ ®)

"
R(i; a) + °

X

h
»¼j (h)Qn(j; h)

#
(11)

for (9). The Q-learning algorithm converges with probability 1 to within ² of the optimal Q-

values and, subsequently, the optimal functional values V if the system is controllable and there
exists an absorbing state [18]. A number of other convergence proofs for Q-learning exist in the
literature. Notable examples include [19, 4, 1]. In the sequel, we present an algorithm which
exploits the convergence properties of Q-learning on discrete sets and nonlinear optimization
methods to search for the optimal control in a continuous space.

3.1 CAS Algorithm

The Continuous Action Space (CAS) algorithm begins with a representative subset aj; j =
1; : : : ; A; of the action space A for each state i. This subset spans some interval of uncertainty
(IoU) regarding the location of the optimal control action in the continuous action space. The

Q-learning algorithm determines the optimal control policy given this action subset. Based
on this policy, the interval of uncertainty is reduced for selected states, thereby adjusting the
locations of the reference actions. As the CAS algorithm continues, the intervals of uncertainty
for each state are reduced toward 0, centering on the optimal action in the continuous action
space if certain assumptions are maintained.

The general CAS algorithm is as follows:

Algorithm 3.1
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1 Set boundary condition: V (s?) = 0.
2 Initialize aj for all states.
3 Set Q0(i;aj) = M À 0 8i; j.
4 n(i)Ã 0 8i
5 while n(i) < N 8i do
6 Perform an iteration of Q-learning.
7 if Policy doesn't change for state i
8 n(i)Ã n(i) + 1
9 else

10 n(i)Ã 0
11 ¯
12 if Reduction criteria is met for state i

13 Reduce IoU by ¯ < 1 around aj? ; j? =argminjQn(i; aj) 8i od

The choice of the reduction parameter ¯, learning rate ®, threshold N , and initial Q-value M

a®ects the rate of convergence. The properties of the CAS algorithm are examined in the next
section.

3.2 Properties of the CAS Algorithm

The key to the e±ciency of the CAS algorithm is that the optimal policy can, in many cases, be
determined before the Q-learning algorithm converges to the optimal functional values. Basing
the policy improvement procedure on this information is equivalent to waiting for the Q-learning

algorithm to converge.
The Q-values from (7) are equivalent to a positive stochastic dynamic program and, therefore,

an optimal stationary policy exists [7]. A stationary policy is one that is nonrandomized and is
time-invariant. By Assumption 2.2, the set-point regulation problem is controllable. De¯ning
the set-point s? as an absorbing state, the estimates Qn(i;aj) are guaranteed to converge to
Q(i;aj) as de¯ned in (10) with probability 1 [18].

Theorem 3.1 Given a Markov system with an absorbing state s? and a unique optimal station-
ary policy ¼?, there exists an ² > 0 su±ciently small such that if

jQn(i; a)¡Q(i; a)j < ² 8i;8a (12)

for all n ¸ k, there exists a k0 · k such that

¼n(i) ´ min
a
Qn(i; a) = ¼?(i) 8i (13)

for all n ¸ k0.
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Proof: The Q-learning algorithm converges for this system. Therefore, (12) is satis¯ed for each
² > 0 and a corresponding k 2 N. A unique optimal policy implies

m(i) = min
a6=¼?(i)

jQ(i; a)¡Q(i; ¼?(i))j > 0 8i: (14)

Choose ² such that

0 < ² < min
i

1
2
m(i): (15)

It follows from convergence that for n ¸ k

jQn(i; a)¡Q(i; a)j < ² 8i; a: (16)

The choice of m(i) ensures that

Q(i; ¼?(i)) + ² < Q(i; ¼?(i)) +
1
2
m(i) < Q(i; a)¡ 1

2
m(i) < Q(i; a)¡ ² 8i; a6= ¼?(i): (17)

Therefore, for any estimate Qn(i; a) for n ¸ k,

Qn(i; ¼?(i)) < Qn(i; a) 8a6= ¼?(i);8i (18)

and
¼n(i) = ¼?(i) 8i; (19)

The optimal policy ¼? is found in no more than k iterations. 2

Theorem 3.1 provides a weak theoretical upper bound on the number of iterations until the
²-optimal policy is found. In practice, the ²-optimal policy may be found in signi¯cantly fewer
iterations. Consider a discrete approximation to the inverted pendulum balancing problem with

625 discrete states. Using a full backup for each iteration, 479 iterations are necessary before
the Q-values converges to within ² = 0:001 of the optimal functional values. Yet, the optimal
policy is actually determined after only 108 iterations, as shown in Figure 1{a 77.45% reduction
in computational e®ort. Figure 2 illustrates the convergence of the maximum change in the
Qk(i; a) approximation toward 0 as Q-learning progresses. The abrupt change in the function at
iteration 108 occurs as the last policy change takes place. From that point onward, the standard
Q-learning algorithm maintains a constant optimal policy but the approximation to the optimal

value function is converging to the true values.
Each state i has an interval of uncertainty (IoU) in the continuous action space A which

contains the true optimal action ¼?(i). The estimates of the Q(i; aj) values for each state i serve
as a guide for reducing the interval of uncertainty. Initially, this interval is the entire action space
A. Each reduction is by a factor of 0 < ¯ < 1. Therefore, the interval can be made arbitrarily
small using successive reductions. Let the reference action subset for state i be de¯ned

AA(i) = fa1;a2; : : : ;aAg ½ A: (20)
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Figure 1: Optimal policy found in considerably fewer iterations than the theoretical optimal
functional values.
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Figure 2: Maximum change in the estimated Q-values during each iteration, plotted on semilog
paper.
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De¯ne the transformation

B(¯;AA(i); k) = f¯[a1 ¡ aj? ] + aj? ; : : : ; ¯[aA ¡ aj? ] + aj?g (21)

where j? = argminjQk(i; aj) as the Successive Reduction procedure. Let A0
A(i) be the initial

set of reference actions. Each successive set of reference actions is de¯ned by the transformation
in (21) giving

Al+1
A (i) = B(¯;Al

A(i); k): (22)

This reduces the interval of uncertainty for each state i as follows:

Algorithm 3.2

1 Determine ²-optimal policy for Al
A(i) after k iterations.

2 Al+1
A (i)Ã B(¯;Al

A(i); k)

If we denote the initial interval of uncertainty, IoU0, as

IoU0 = sup
a
fa 2 Ag ¡ inf

a
fa 2 Ag; (23)

then it requires at least
ln ²¡ ln IoU0

ln¯
(24)

successive reductions of the interval of uncertainty to reach any speci¯ed accuracy ² > 0.

Theorem 3.2 The Q-learning algorithm, when used to estimate the Q(i; aj) values, generates
two possibly distinct times k0 and k with

B(¯;AA(i); k0) = B(¯;AA(i); k) 8i: (25)

Proof: The Successive Reduction procedure is based on j?k0 = argminjQk0(i; aj) and j?k =
argminjQk(i;aj), respectively, 8i. From Theorem 3.1, it follows that j?k0 = j?k 8i. Therefore,

¯[a1 ¡ aj?
k0

] + aj?
k0

= ¯[a1 ¡ aj?k ] + aj?k 8i; (26)

and (25) is proved. 2

Theorem 3.2 allows for the application of the Successive Reduction procedure when the
optimal policy is found rather than waiting for the optimal functional values to also converge.

Theorem 3.3 If ¼? represents the ²-optimal policy at time k for the system on the reference
action subset AA, then ¼? is an allowable policy on the new reference action subset

A0A(i) = B(¯;AA(i); k): (27)
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Proof: The optimal policy ¼? is de¯ned as ¼?(i) = aj? , where j? = argminjQk(i;aj) 8i.
Therefore, under the successive reduction transformation de¯ned in (21), the element corre-
sponding to aj? becomes

¯[aj? ¡ aj? ] + aj? = aj? (28)

and aj? 2 A0A, for all i. 2

Since the current optimal policy over the reference subset is an allowable policy in the revised

reference subset, the following Corollary holds.

Corollary 3.1 If the l-th error bound is de¯ned as

"lV ´ max
i
jV l
n(i)¡ V (i)j (29)

where
V l
n(i) = min

j
Qn(i;aj) 8aj 2 Al

A(i); (30)

then f"0
V ; "

1
V ; : : :g is a non-increasing sequence.

Proof: Determine "0
V from the Q-learning algorithm on the initial reference action subset A0

A.

Apply the Successive Reduction procedure:

A1
A = B(¯;A0

A; n): (31)

From Theorem 3.3, the optimal action at each state is an element of A1
A. Therefore,

V k+1
n (i) = min

j
Qn(i;aj) · min

j
Qn(i; a0j) = V k

n0(i) 8i (32)

where aj 2 A0
A and a0j 2 A1

A. Thus,
"1
V · "0

V : (33)

By induction, the result is proven. 2

The error bounds are non-increasing, thus the sequence converges to some real number in [0; "0
V ].

Corollary 3.1 provides that each application of the Successive Reduction procedure produces a
policy that is at least as good as the previous policy.

We now examine conditions that ensure convergence to the optimal policy ¼?. Assume the
state of the system is i, and the optimal policy over the continuous action space A is ¼? = fa(0),
: : :, a(k)g, where k + 1 is the iteration when the system enters the absorbing state s?. If the

transition function ¿(s;a; !) is not random, then the state space S can be divided into subsets

S = s? [ S1 [ ¢ ¢ ¢ [ SN (34)

where Sj is the set of all states that are j transitions away from the set-point s? under the
optimal policy ¼?. Under Assumption 2.2, N <1.
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Initially, we look at the one-stage case where k = 0, or, equivalently, some state i 2 S1.
The Successive Reduction procedure guarantees policy improvement when the piecewise-linear
approximation de¯ned by the Q(i;aj) values for state i is strictly quasi-convex in j. See Figure
3. This ensures that if action a? is optimal, then actions closer to that optimal action are better

Figure 3: Piecewise-linear approximation of Q(i; a) using reference subset A7 =
f¡15;¡10;¡5; 0; 5; 10; 15g.

than actions further away.

Theorem 3.4 If the Q(i; aj) function is strictly quasi-convex in j for state i 2 S1 using refer-
ence subset AA, then for

(sup
a
fa 2 Ag ¡ inf

a
fa 2 Ag)(A¡ 1)¡1 < ¯ < 1

the reference subset
A0A(i) = B(¯;AA(i); k) 8i (35)
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is such that
min
j
Q(i;a0j) · min

j
Q(i; aj): (36)

Further, for any ² > 0 there exists an N 2 N such that N applications of the Successive Reduction
procedure satis¯es

max
j
kaj ¡ ¼?(i)k < ² (37)

Proof: Upon convergence of the Q-values, the optimal action in AA for state i is

j?k = argminjQk(i; aj): (38)

Therefore,
¯[aj?k ¡ aj?k ] + aj?k = aj?k ; (39)

and aj?k 2 A0A. Thus,
min
j
Q(i; a0j) · Q(i; a0j?k ) = min

j
Q(i;aj): (40)

Therefore, (36) is satis¯ed. As a result of the strict quasi-convexity, the optimal action

aj?k¡1 < a? < aj?k+1: (41)

The choice of ¯ > (supafa 2 Ag ¡ infafa 2 Ag)(A¡ 1)¡1 ensures that both

a01 · aj?k¡1

and
aj?k¡1 · a0A:

Therefore,
a01 < a? < a0A: (42)

2

The strict quasi-convexity assumption does not always hold, but even then an adroit choice of
¯ and A can achieve the desired result in practice. This is evident in the example applications
that follow.

Theorem 3.4 ensures convergence to the optimal action for the one-stage problem. By in-
duction, the CAS algorithm converges to the optimal policy ¼? under the strictly quasi-convex
assumption if the successive reductions are applied to a particular sequence of states.

Theorem 3.5 The Successive Reduction procedure determines the ²-optimal policy ¼? for all
states, for a system with the Q(i;aj) function strictly quasi-convex in j for all i.
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Proof: Consider all states i 2 S1. By Theorem 3.4, there exists a K such that after K successive
reductions on each state i,

max
j
kaj ¡ ¼?(i)k < ²: (43)

Assume this is true for subsequent applications to sets S2, : : :, SN¡1. Therefore, by induction

and Bellman's principle of optimality, for all states i 2 SN , the problem is equivalent to the
one-stage case with a terminal cost of minj0Q(i0; a0j) where i0 2 SN¡1 is the successor state to
the action j taken in state i. Thus, the optimal action is found for all states i. 2

Theoretical convergence is guaranteed by the appropriate choice of which states to apply the
Successive Reduction procedure to ¯rst. The constructed sequence, S1, : : :, SN , accomplishes
this but, under Assumption 2.4 this classi¯cation of states cannot be made explicitly. As such,
heuristics are employed that attempt to approximate these subsets of S.

3.3 Heuristic Stopping Criterion

Recall from Figure 1 that the potential for signi¯cant computational savings exists. In practice,
to ensure that the ²-optimal policy ¼? is found, the ²-optimal Q-values must also be determined.
This negates any computational savings. This section illustrates that, in practice, near-optimal
policies ¼¤ may be found in signi¯cantly less computational e®ort. A stopping criterion is used
to halt the Q-learning algorithm. The stopping criterion investigated is the Z% K-stationary
stopping criterion.

De¯nition 3.1 The Z% K-stationary stopping criterion halts the Q-learning algorithm at it-
eration n if the current policy

¼¤(i) ´ min
j
Qn(i; aj); aj 2 AA(i) 8i (44)

has remained constant for the last K visits to each state i for at least Z% of the reference state
subset.

This prevents states that are infrequently visited during the learning phase from preventing the
CAS algorithm to continue with its policy improvement steps.

3.4 Order of Successive Reduction Procedure

The theoretical convergence properties of the CAS algorithm rest upon the assumption that
the Successive Reduction procedure is performed on the proper sequence of states. In Theorem
3.5, the constructed sequence, S1, : : :, SN , accomplishes this but, under Assumption 2.4, this

classi¯cation of states cannot be made explicitly. We propose a heuristic based on temporal
di®erences policy evaluation that approximates these subsets of S.

14



Determining the number of expected transitions from any state i to the set-point s? is, itself,
an approximate dynamic programming problem. The current ²-optimal policy ¼¤ on reference
action subset AA(i) was determined via Q-learning using a uniform probability exploration
strategy. A proper sequence of updates must be determined or the CAS algorithm converges to
a suboptimal policy.

The learned Q-values determine the optimal action but these values do not necessarily cor-
relate with a measure of the number of expected transitions until the set-point is reached. The
online algorithm is used for approximating these Q-values may be extended to estimating this

new value function:

V¼¤(i) = Expected number of transitions under policy ¼¤ from state i
to the set-point s?.

(45)

The functional equation is

V¼¤(i) = 1 +
SX

j=1
pij(¼¤(i))V¼¤(j); (46)

with boundary condition V¼¤(s?) = 0. This can easily be determined via approximate dynamic
programming with the update equation:

V n+1
¼¤ (i) = ®V n

¼¤(i) + (1¡ ®)(1 + V n
¼¤(j)): (47)

The CAS algorithm now becomes a sequence of optimal policy determinations and successive

reductions of the interval of uncertainty, IoU. The °owchart is given in Figure 4.

3.5 Computational Complexity

Both Q-learning and the CAS algorithm possess the same complexity in terms of data storage
(O(SA)) and computations, but the potential for savings comes through the total number of
iterations for each. The cyclical policy determination/policy improvement procedure of the CAS
algorithm terminates in a ¯nite number of cycles. Let the desired number of visits for each state-
action pair be D. In full backups, D iterations accomplishes this goal. In sample backups, if
each state is equally probable and each action is chosen according to a uniform distribution,

DSA iterations are required for each state-action pair to have D expected visits. If an accuracy
of ² is desired, standard Q-learning with sample backups requires

A >
(supafa 2 Ag ¡ infafa 2 Ag)

2²
=
IoU0

2²
(48)

reference actions. However, the CAS algorithm requires fewer reference actions for the same ²
since the interval of uncertainty is reduced during each policy determination/policy improvement
cycle. Under the strict quasi-convexity assumption,

¯ =
2

A¡ 1
; (49)
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Figure 4: Flowchart for CAS algorithm.
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insures that the IoU is reduced to the interval [aj?¡1;aj?+1] after the Successive Reduction
procedure is applied. Therefore, if a limit of M successive reductions for each state is desired,

A > exp
·
M ln 2 + ln(supafa 2 Ag ¡ infafa 2 Ag)¡ ln ²

M

¸
+ 1 (50)

reference actions achieves ²-accuracy. For example, if ² = 0:001, then for standard Q-learning
with sample backups for the inverted pendulum requires 15,000 reference actions. With the
CAS algorithm, however, the same accuracy can be achieved with 347 actions and 2 successive

reductions at each state. Thus, accuracy is linear in A for standard Q-learning, but exponential
in A for the CAS algorithm.

In the worst case, only 1 state belongs to each S1; : : : ;SN and, therefore, (MN)DSA =
MDS2A iterations are required. While this is a considerable amount, in practice N ¿ S. For
the average-case in the example problems, the combination of the heuristic stopping criterion
coupled with the large reduction in the number of reference actions required generates a near-
optimal control policy in 20-40% fewer iterations than standard Q-learning.

4 Example Applications

The CAS algorithm and the Z% K-stationary stopping criterion are investigated on two set-
point regulation problems. The ¯rst is the benchmark nonlinear control problem of balancing an

inverted pendulum on a cart [13]. This common problem illustrates some of the advantages of
the proposed algorithm. The second problem of interest is the more complex task of stabilizing
a power system under a load [10, 11, 5, 6, 16]. This exhibits the application of the proposed
reinforcement learning algorithm on a practical problem.

4.1 Inverted Pendulum Balancing

The inverted pendulum balancing problem is an example of an inherently unstable system [13]
and has a broad base for comparison throughout the literature. There are four state variables,

s = hµ;¢µ; x;¢xi, and one action variable, a = F . In this experiment, the immediate return
function for taking action a while in state s is de¯ned

R(s;a) ´
h
µ2 + x2

i
¢t (51)

where ¢t represents the time interval between samplings of the state vector s. Therefore,

V (i) = Expected discounted sum of squared error (SSE) when
starting in state i and following an optimal policy ¼? thereafter.

(52)

Initially, we examine the e®ectiveness of our stopping criterion. Speci¯cally, we investigate
the percentage of states meeting a particular K-stationary criterion after a ¯xed number of
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iterations. Three factors are used{the state space cardinality S, the action space cardinality A,
and the particular K-stationary level. When using sample backups, we are not assured that
each state-action pair is tried during the learning phase. Therefore, the K-stationary criterion
is made dependent upon the number of actions A. For any level, xA, this implies an expected
number of visits to each reference action at a particular state is x. Table 1 shows the various
levels for the three factors in the experiment. Figure 5 plots the main e®ects of these factors on
the percentage of states meeting the K-stationary stopping criterion after 1,000,000 iterations.

Table 1: Levels of variables in K-stationary sample backup inverted pendulum balancing exper-

iment.

Four replications for each factor level combination were run. The mean percentage of states
meeting the K-stationary stopping criterion is 28:5%§0:114%. The standard error is estimated
using a pooled estimate from the replicated runs:

s2 =
º1s2

1 + ¢ ¢ ¢+ º8s2
8

º1 + ¢ ¢ ¢+ º8
= 0:004% (53)

with 24 degrees of freedom. From the percentage of states that have a stationary policy for K
iterations, the following signi¯cant inferences can be drawn:

1. All three factors seem to have a signi¯cant negative e®ect on the percentage of states that
have a stationary policy for K iterations. The variable K has an e®ect for obvious reasons.
The negative e®ects of S and A are due to the ¯xed stopping iteration. Naturally, with
more state-action pairs, a ¯xed stopping point implies fewer expected visits to each pair.

2. The S £A£K interaction was signi¯cant and, therefore, the separate e®ects of S and A
are di±cult to interpret.

3. Failure to balance the pendulum occurred for 3 of the 48 replicate runs. All three of these
were at the K = 5A level. The next experiment uses only the K = 10A level for this
reason.

We now examine the computational savings based on the iteration that particular Z% K-
stationary stopping criterion are met. The state space is kept at a constant size of 625. The
two factors are A and Z%. The levels for these two factors are given in Table 2.

The CAS algorithm cycles through a number of policy determination and policy improvement
steps until a su±cient approximation of the optimal continuous policy is found. The main
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Figure 5: Main e®ects of factors on the percentage of states meeting K-stationary stopping
criterion: (1) State space cardinality, (2) Action space cardinality, (3) K.

Table 2: Levels of variables in Z% K-stationary sample backup inverted pendulum balancing
experiment.
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e®ects on computational savings from a particular Z% K-stationary stopping rule is shown in
Figure 6. With a small number of reference actions, A, the computational savings can be quite

Figure 6: Main e®ects of factors on the number of iterations required before meeting various
Z% K-stationary stopping criterion: (1) Z% set to 25%, (2) Z% set to 50%, (3) Z% set to 75%.

large. Speci¯cally, for this problem the average computational savings of the CAS algorithm
over standard Q-learning is 82.1%, 71.4%, and 49.6% respectively for A = 7, A = 11, and
A = 45. Furthermore, there was no statistically signi¯cant di®erence in the optimal value
function between the CAS algorithm and Q-learning for various initial state vectors.

For the inverted pendulum balancing problem, Figure 7 plots the trajectory of the learned
optimal control for a particular initial point compared with a benchmark optimal control. The
¯rst trajectory is the benchmark optimal trajectory assuming the model is known. The second

is a benchmark trajectory for an unknown model using sample backups. The third trajectory
is the learned trajectory for a discrete action space approximation of A = 7. Finally, the fourth
trajectory is the result of the CAS algorithm using A = 7. Corollary 3.1 ensures that the result
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of the CAS algorithm can be no worse than this third trajectory. The ¯gure highlights the
advantage of searching a continuous action space, as the CAS algorithm does, over searching
over a ¯xed discrete subset of the action space like standard Q-learning. In this case, the
optimal control is not part of this discrete subset and the learned control law for Q-learning,
while optimal over the discrete subset of reference actions, is sub-optimal for the continuous
space.

Figure 7: Learned control trajectories for various algorithms: (1) Benchmark with full backup,
(2) Benchmark with sample backup, (3) Q-learning, (4) CAS algorithm.

4.2 Power System Stabilization

The power system stabilization problem represents an underdetermined system that can be
approached as either a multiple-input/single-output (MISO) or multiple-input/multiple-output

(MIMO) control problem [10]. For illustrative purposes, the MISO approach is taken here.
The system considered is composed of a synchronous machine with an exciter and a stabilizer
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connected to an in¯nite bus. The dynamics of the synchronous machine can be expressed using
the linearized incremental model with two measurable inputs, s = [!;¢!], and one output,
a = [u] [12]. In contrast to the inverted pendulum system where the dynamics are assumed
unknown but the complete state of the system can be measured, the power system stabilization
problem has only two state variables, [!;¢!], that can readily be measured. Therefore, the
unknown values for the remaining state variables create a stochastic process with unknown
transition probabilities which the algorithms will implicitly learn.

Due to the additional uncertainties in the dynamics of the system, more learning iterations

are needed in both Q-learning and the CAS algorithm. Not all experiments ended in success,
though the majority did. Four replications of each experiment were run. For each, the desired
accuracy, ², is set to 0.001. For standard Q-learning, this implied that

A >
+0:12¡ (¡0:12)

2 ¢ 0:001
= 120: (54)

For the CAS algorithm, A = 11 was chosen. Under the strict quasi-convexity assumption,
¯ = 0:2 and three iterations of the Successive Reduction procedure will obtain the ²-accuracy.

The number of discrete states was set to 625 for both algorithms.
Our experiments on this practical problem of interest highlight some of the advantages and

disadvantages of using the CAS algorithm on an underdetermined system. Of the twenty random
experiments run for both Q-learning and the CAS algorithms, both learned to keep the system
from failing in 19 of 20 trials. By varying the number of learning iterations to insure that
convergence to the optimal value function is obtained in Q-learning, it was determined that in
some instances this system cannot be controlled simply by measuring ! and ¢! and varying

u. In the 19 trials where success was obtained, there were varying degrees of \goodness" of
the learned control law. For the Q-learning algorithm, the range of settling times varied from
4.21 seconds to 11.38 seconds. Similarly, the range of settling times for the CAS algorithm
varied from 4.53 seconds to 9.76 seconds. There was no statistically signi¯cant di®erence in the
paired settling times for the same random trial for each algorithm. As an example of a learned
control trajectory, see Figure 8. The CAS controller successfully learned to stabilize the plant
in approximately 4.5 seconds after a load is applied.

The advantage of using the CAS algorithm over standard Q-learning is in the computational
savings. For the power system stabilization problem, the average computational savings is 23.4%
for the 20 trials. This is due to the ability of the CAS algorithm to concentrate its learning e®ort
on a particular region of the action space by re¯ning the interval of uncertainty (IoU) through
the Successive Reduction procedure.
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Figure 8: Learned control trajectory for the power system stabilization problem using the CAS
algorithm.
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5 Summary

This paper proposes a reinforcement learning algorithm for set-point regulation problems that
have continuous action spaces. It is based on Watkin's Q-learning algorithm and derivative-free
line search methods in optimization. The computational savings over traditional Q-learning have
been illustrated. The CAS algorithm has also been shown to e±ciently learn an ²-optimal control
law for two example problems. Its theoretical convergence properties have been established under
moderate assumptions, though deviation from these assumptions in practice is not necessarily
detrimental to learning a good control law.

We are currently investigating methods to generalize these learned control laws to continuous
state spaces through procedures based on fuzzy set theory. Application to more diverse problems
of interest is also underway, especially those problems that require the use of a hierarchical
reinforcement learning approach.
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