

United States Military Academy =

Electrical Engineering and Computer Science

Intelligent Control Systems: Integration of Process Control and Predictive Models in a Combined GUI-Based Application

John M. D. Hill, Ph.D. United States Military Academy West Point, NY

Context

Electrical Engineering and Computer Science = 💜

- Process Control
 - PLCs Programmable Logic Controllers
 - SCADA Supervisory Control and Data Acquisition
 - "Tag Points" value reading and control setting
- Specific example:
 - West Point co-generation power plant
 - Intelligent Power Plant project
- Some software mechanisms
 - OPC Server OLE for Process Control
 - OLE Object Linking and Embedding
 - COM Component Object Model
 - DCOM Distributed COM
 - XML eXtensible Markup Language

Some Issues and Opportunities

- = Electrical Engineering and Computer Science =
- Existing Interfaces often:
 - are locked-in and inflexible for the operators
 - don't provide dynamic facilities to support modeling, optimization, and control
- Sensor suites thinking ahead
 - Beyond monitoring need the right data points for modeling, prediction, optimization, and control
 - May require installation of additional sensors
- Opportunity to create a useful and flexible GUI
 - Provide visualization of what the operators want to see
 - Provide simple mechanisms for what the operators want to do
 - Make it easier for the modelers to build predictors and optimizers
 - Determine how to make it extensible to any process

Discovery and Organization

= Electrical Engineering and Computer Science =

- Discovery
 - Need a mechanism for exploring the exposed data points
 - Need input from the process engineer
- Organization
 - Re-name the data points without losing access to them
 - Hierarchical organization in agreement with intuition
 - Create read and write ability for each tag point
 - Consolidate all of this in a component library

Data Capture

Electrical Engineering and Computer Science =

- Data Capture Module
 - Select single tag points or entire hierarchies to capture
 - The operator knows the data that is desired
 - Provide a standard mechanisms that computer users understand
 - Double-click, appear in list
 - Drag from tree, drop into list
 - Select time interval, and record timestamps
 - Save recorded data to the database
 - Can use *any* component library don't have to create a new data capture mechanism for each process

Simulation

= Electrical Engineering and Computer Science =

- Simple mechanism for incorporating simulation
 - Insert an IO Interface module before the Component library
 - Switch it to read data directly, or from the simulation
 - Simulation pulls the data through a Data Integrator
 - Data source is transparent to users of the Component Library

=United States Military Academy=

Process Monitoring

Electrical Engineering and Computer Science =

- Tag Points of Interest
 - We have a visualization of the (re-named) tag points
 - Behind that, we have the means of reading the tag points
- Methods for Presenting the Readings
 - As text
 - As a graph
- Comparison of Different Tag Points
 - Trend graphs are synchronized in time
 - Snapshots of text and graph displays can be captured

United States Military Academy **Process Monitoring - Image** = Electrical Engineering and Computer Science = Example 🕾 Intelligent Power Plant Drag and drop File Help Discovery Monitoring Modeling Predicting Controlling from the Data Capture: With AIDE Simulation: Launch hierarchical Displa Device Tree Visualization: NP030509 tree Boiler3 _ 🗆 × 🗄 🛄 Turbine2 Boiler3.SteamFlow _ 🗆 × 🗄 🛄 Turbine3 E Boiler1 SteamElow 25773.7 lbs/hr Boiler3.SteamFlow E- Boiler3 FeedFlow 25.0 lbs/h Features + SteamFlow 2725 FeedFlov GasFlow 4372.2 CFH 2700 E OiFlow OilFlow 1777.1 lbs/hr 2675 E 02 E. DrumLevel 4 26500 - Source 02 5.1 percent + DrumPressure FDBPower 26250 DrumLevel: -0.3 inches H20 H-Boiler2 🗄 📋 HPSteam 26000 independence DrumPressure 167.7 ps E DISteam 25750 E AuxHPSteam FDBPower 29.4 KW 09:26:50 09:27:00 09:27:10 09:27:20 09:27:30 09:27:40 🗄 🧰 Outside Time E E FeedPump1 E E FeedPump2 - Flexibility Actua E FeedPump3 E CondPump Boiler3.GasFlow _ 🗆 × Live or **Boiler3.GasFlow** 430/ replayed data 4300 4385 4380 I 4375 6 4370 4365 4360 4355 4350 09:26:50 09:27:00 09:27:10 09:27:20 09:27:30 09:27:40 Time

_ F 🗙

Actual

=United States Military Academy =

Modeling

Electrical Engineering and Computer Science

- Models based on tag points of interest
 - Select tag points from the component library
 - Remember that the data might be live or simulated
 - Modeling may be counter-intuitive (what follows what?)
- Different model types to "plug in"
 - First principles, look up tables, neural networks, etc.
 - More on model creation and neural networks from Peter Curtiss

Process Modeling

United States Military Academy

Electrical Engineering and Computer Science

- Extended Modeling
 - Lots of things that affect the model (and predictions based on it) may not be included in the tag-points.
 - Examples from the USMA Power Plant:
 - Student attendance
 - Weather (trend, not instantaneous)
 - Others already mentioned by Darrell Massie
 - Might need to get these from external sources
 - Security issues! More on this from Scott Lathrop
- More sophisticated modeling
 - Decouple the models from the components
 - The output of some models may be the inputs of other models
 - Need mechanism for composition of the meta-models

Model Visualization and Mapping

- Visualizing the models
 - Name, Inputs, Outputs
- Making the connection
 - List the models from the model library
 - Drag them onto the mapping field
 - Drag the output from one model to the input of another
 - Collapse/expand models for clarity
- Works for any model

=United States Military Academy =

Modeling Validation and Verification

= Electrical Engineering and Computer Science =

- Validation
 - modeling the correct objects (input from the process engineer)
- Verification
 - modeling the objects correctly
- Statistical measures of accuracy

United States Military Academy

Prediction - Image

- Correct models
 - can be used for making predictions
- Visualization
 - of predictions by themselves
 - of predictions
 versus actual
 data
 - helps people see the accuracy (or inaccuracy)

Electrical Engineering and Computer Science

— Electrical Engineering and Computer Science =

- Optimizer
 - Feeds "what if?" inputs to the model(s)
 - Records the best combination
 - Sends the best combination to the controller
- Controller
 - Can recommend control settings to the operator
 - Can control the process directly (through the component library)

Optimization and Control - Image

Electrical Engineering and Computer Science

- Visualization
 - helps the operator believe the recommendation

Conclusions

- *Electrical Engineering and Computer Science*
- The ability to discover, re-name, and organize tag points into an easily understood component library serves as the foundation for the other operations described here.
- Basing the other operations on the component library significantly reduces the amount of custom programming required.
- Graphical interfaces and visualizations:
 - make data capture, monitoring, etc., accessible to the operator.
 - make model creation and mapping easier for the modeler.