
Puzzles and Games: Addressing Different Learning Styles in
Teaching Operating Systems Concepts

John M. D. Hill, Clark K. Ray, Jean R. S. Blair, and Curtis A. Carver, Jr.

Department of Electrical Engineering and Computer Science
United States Military Academy

S

West Poi
{John.Hill, Clark.Ray, Jean.B

Abstract
Because students have different learning styles, it’s important to
incorporate multiple teaching techniques into the classroom
experience. One such technique is the use of puzzles and games
in the classroom to reinforce the learning objectives. Many topics
in Computer Science are well suited for coverage in such a game.
Several in-class puzzles and games have been used in the
Computer Science program at this institution in recent years. In
basic and advanced courses, simple crossword puzzles reinforce
terminology and Jeopardy!®-style games help students master
material with short answers. In the most recent iteration of the
Operating Systems course, a BattleShip-like game and a
Process State Transition game helped students appreciate different
approaches to process and thread management. The latter two
games have been assessed for their effectiveness, providing
several insights into what makes a good in-class game for
teaching operating systems concepts, and how the existing games
can be improved.

Categories and Subject Descriptors
K.3.2 [Computers and Education] Computers and Information

cience Education - Computer Science Education.

General Terms
Algorithms, Experimentation, Human Factors

Keywords
Learning Styles, Classroom Games, Operating Systems

1 Introduction
It’s not a big secret that different students have different learning
styles. For example, Felder’s model includes several basic
dimensions: sensory/intuitive, visual/verbal, active/reflective, and
sequential/global. [3] This means that teachers can reach more
students by using a variety of instructional techniques. In addition
to the textbook, the lecture, the assignments, and even online

This paper is authored by employees of the United
States Government and is in the public domain.
SIGCSE'03, February 23-25, 2003, Reno, Nevada, USA.
ACM 1-58113-648-X/03/0002.
nt, NY 10996
lair, Curtis.Carver}@usma.edu

course resources, it’s useful to incorporate hands-on exploration
into the classroom. This can be an important component of using
learning style theory to improve engineering education. [13]

Because any collection of students embodies many different
preferred learning styles it is useful to incorporate multiple
teaching strategies, including in-class games. The use of games,
particularly competitive games, as an additional teaching tool in
the classroom is not a particularly new idea. They are commonly
used in economics and social science classrooms [6], in teaching
mathematics [1], and to support science courses. [5]

With the availability of modern programming and prototyping
tools, many useful simulations and web-based applications have
been added to the normal teaching techniques. However,
Computer Science students in particular already have plenty of
“face time” with keyboards and screens. In the Computer Science
program at this institution, students at every level from freshmen
to seniors have, in several post-course assessments, indicated that
they prefer more in-class exercises or similar techniques to
reinforce the learning objectives. As a result, faculty members are
exploring practical hands-on experiences, including games that
can be used to teach and reinforce Computer Science concepts.

2 Related Work
There are several people using simulations, web-based
applications, and games in support of teaching Computer Science
concepts. Tim Bell describes how to present fundamental
Computer Science ideas to general audiences. [2] Ohlsson and
Johansson have used role-playing games and practical exercises
for software engineering education. [8] In the realm of operating
systems courses, Robbins and Robbins report on using a process
scheduling simulator to support hypothesis-testing [10] and
another simulator for the examination of synchronization. [11]
The 2001 SIGCSE conference inspired the creation of a maze
demonstration program suitable for student exploration of a maze
traversal algorithm. [9] Levitin and Papalaskari examined the use
of puzzles to illustrate the operation of some routinely-taught
algorithms (brute-force search, divide-and-conquer, and other
strategies). [7]

The views expressed are those of the authors and do not reflect the
official policy or position of the United States Military Academy,
the Department of the Army, the Department of Defense or the
United States Government.

3 Puzzles and Games for any CS Course
Crossword puzzles and Jeopardy!®-style games were recently
used in several Computer Science courses at this institution. The
instructional crossword puzzles and Jeopardy!®-style games
described below are examples of ways to create in-class
experiences that support learning objectives involving
terminology and basic concepts.

3.1 Crossword Puzzles
Students in a senior-level Fundamentals of Computer Theory
course were offered Crossword Puzzles as a means of reinforcing
definitions of terms. Not all of the students were required to
complete the Crossword Puzzles. Rather, some students
completed them as an in-class exercise with immediate feedback
from the instruction and other students completed them out of
class. The Crossword Puzzles are designed more for knowledge
reinforcement than for discovery of new concepts. They are
examples of individual games that do not allow for competition
between the players.

3.2 The Jeopardy!® Game
In many courses there is a large amount of information that falls
into the “know” or “be familiar with” or “know how to”
categories. Definitions of terms are one example, as are simple
problems, calculations, or algorithms. These are ideal candidates
for inclusion in a Jeopardy!®-style game ("Jeopardy!" is a
registered trademark of Jeopardy Productions, Inc).

Students in a freshman-level Introduction to Computer Science
course and a senior-level Fundamentals of Computer Theory
course were presented with a Jeopardy!® game tailored to the
knowledge appropriate to the course. The game is implemented
in HTML and requires at least an instructor workstation and a
means of projection. If placed on a publicly available server,
students can access it for exploration at their own pace. However,
this game works best in the classroom where students compete
with each other and scores can be kept.

The columns of the board are populated with topic areas drawn
directly from the learning objectives. Figure 1 shows a layout for
context-free grammars and pushdown automata from the
Fundamentals of Computer Theory course.

REGULAR NOT READ
CFG

DESIGN
CFG CONVERT PDA

200 200 200 200 200 200

400 400 400 400 400 400

600 600 600 600 600 600

800 800 800 800 800 800

1000 1000 1000 1000 1000 1000

Figure 1: Double Jeopardy! Layout for
Context Free Grammars and Pushdown Automata

The game board can be set up with the answers like actual
Jeopardy!®, but is typically set up with questions. Some examples
are shown in Figure 2. Feedback on the correctness of student
answers can be automated or can come from the instructor.
Another advantage to performing this game in class is that the
instructor can provide explanations or additional comments.

Convert the following
grammar to Chomsky
Normal Form.

S —› SS

S —› (S)

S —› e

 Construct a grammar
 whose language is
{ambncpdq}

where

(n = q) or (m <= p)
or (m+n = p+q)

Figure 2: Sample Questions for CFG and PDA

3.3 Assessment of Crosswords and Jeopardy!
The students provided positive remarks when asked their opinion
of the crossword puzzles, stating that they were an effective
technique for reinforcing knowledge of terminology. The
Jeopardy!® game was also generally well received. However,
several students commented that at any particular moment only a
few students were actively engaged. One student offered the
suggestion that the game should be played in smaller groups,
perhaps even in different classrooms if available.

4 Games for the Operating Systems Course
The two games described below were developed in response to
assessment results from second-semester juniors at the end of the
Algorithms course who indicated they would “prefer more in-class
practical exercises” and that they “were not willing to invest
practice time unless forced to do so.” The games described below
were developed to support the same body of students as they
became first-semester seniors in the Operating Systems course.
These comments suggested that in-class activities aimed at
students who were more visual / sensory / global learners might
be appropriate. The descriptions of the games and the assessment
of their effectiveness by the students and faculty serve to illustrate
how course concepts can be converted into games, how the games
can be run, and how they might be improved in the future.

4.1 The BattleThreads Game
Students in the senior-level Operating Systems course must come
to an in-depth understanding of the algorithms used for process
management, prioritization in scheduling, memory management,
input/output control, and many other topics. Some in-class games
were developed particularly in response to course assessment
responses from this population of students, who stated that they
would prefer more hands-on in-class exercises to reinforce
complicated material.

One of those games was a modification of the well-known
BattleShip game (BattleShip is a registered trademark of the
Hasbro Corporation). One iteration of this game was used to
demonstrate the differences between processes and threads, and
the advantages of communication between threads in the same
processes through the shared address space. This game was
designed to support the following learning objectives:

• “Students will know what threads are and the distinctions
between threads and processes.”

• “Students will understand the advantages of a multithreaded
organization in structuring applications and in performance.”

For this game, the class is broken down into one controller and
some number of players on each side. The dimensions of the
game board and the size of the ships should be tailored to the
number of student players. An optional rule is that ships cannot
be adjacent to each other, even on the diagonal. The players are
responsible for the placement of one ship each, and for firing a

4.2 The Process State Transition Game shot from that ship each turn until their own ship is destroyed.
The controllers get the enemy team’s ship layout and tell all of
their own players the effect (hit or miss) of each shot. At the end
of the turn, the controllers compare battle damage and report the
results back to their players.

In an Operating Systems course that uses the textbook by William
Stallings [12] a major topic involving process management was
supported by the creation of a Process State Transition game.
According to Stallings, one of the most important achievements in
the history of operating systems design is the concept of a
process. His discussion of processes begins with an examination
of models of process states. One of the most important functions
of the operating system is the management of processes, which
can be represented as just such a state model. This sets the
foundation for future discussion of how processes are described
(operating system control structures, process control structures,
etc.) and how they are controlled (modes, creation, switching,
etc.).

As an example, consider twelve students broken down into two
teams with five players and one controller each. For this scenario
a seven-by-seven grid is sufficient if the ships are limited in size
to occupy exactly three grid squares. This also means the ships
can be destroyed pretty quickly when found, making the game
flow faster. The two teams were given different rule sets. One
team represented a single process broken down into five threads,
all with access to the same address space. This address space
includes the array that represents the enemy grid. Any change to
the array (the recording of a hit or miss) was immediately visible
to all players. No other means of communication was allowed.
The other team represented individual processes that could only
communicate using inter-process communications mechanisms.
This was modeled in a rule that allowed them to either take a shot
or to communicate the effect of the last shot to the rest of the
processes. The two teams were not informed that they were
working with different rule sets.

For this particular game, the supported learning objectives were:

• “Students will understand how to model process management
as the transition of processes between execution states.”

• “Students will understand the data structures maintained by
the operating system to manage processes.”

• “Students will understand how the operating system performs
the scheduling function.” Once the game began the differences in the two approaches

rapidly becomes apparent. In the threads team, as soon as a hit
was recorded, the following players could target the wounded ship
until it was sunk. On the process team, the players had no
information about what the other players had done unless one
chose to announce a result instead of taking a shot. When a hit
was announced, several players would often try to destroy the
same ship, resulting in multiple strikes on the same location.

The members of the class are broken down into sets of 4-6
students. Each set of students is given a game board representing
the seven-state process transition model used in the Stallings
textbook (see Figure 4). One of the students is selected to be the
operating system (OS), one is selected to be the timekeeper (TK),
and the others become programs, each keeping track of some
number of processes as they are managed by the operating system.

Figure 3 demonstrates the status of one such game at the
conclusion of the fourth turn. The ability of the threads team to
target a wounded ship for destruction is evident, as are the
multiple strikes (M2) of the process team. Although the
procedure appeared to be the same for both teams, the process
team rapidly caught on that the threads team was able to
communicate in some fashion.

M M

H

H M M M

M H H H H

M M

H H H M M

H

G

F

E

D

C

B

A

1 2 3 4 5 6 7

H M M

M M M

M M

H M M

M2 H

M M M2 H

M

G

F

E

D

C

B

A

1 2 3 4 5 6 7

Threads – Enemy Board Process – Enemy Board

Figure 4: Modified Figure 3.8(b) from the
Stallings Operating Systems Textbook

Processes are represented as a sequence of processing time (a
capital P followed by a number indicating the number of time
units used for processing) and blocked time (a capital B followed
by the number of time units. See Figure 5 below.

Figure 3: Enemy Boards for the Threads Team and the Process Team

Several different approaches can be used starting with the same
basic game. It is important to note that many of the details of
inter-process communication and shared memory were initially
suppressed for ease of play. Once the students become familiar
with the basic play, the rule set can be changed to emphasize
different concepts. As an example, an alternate approach was
used in which the instructor guided the students as they developed
their own rules. In this approach, an extensive interactive
discussion of process and thread issues took place, followed by
modification of the rules to reflect various process and thread
management strategies.

PROCESS A1: P3, B4, P2, B5, P3
PROCESS A2: P2, B3, P3, B2, P1
PROCESS B1: P3, B5, P1, B3, P2

Figure 5: Process Representation

It’s important not to assign so many processes to the players that
the game gets bogged down. On the other hand, it’s also

important not to assign so few processes that there is no need for
processes to be suspended.

Each process has an associated memory requirement. When a
process moves into a state in which it must be present in memory
(Ready, Running, etc.), the player who owns that process places
its memory markers on a grid representing available memory (see
Figure 6). When the process is suspended, the memory markers
are lifted, indicating that the process has been moved out of main
memory (usually to make room for another process).

MEMORY

A1 A1 A2 A2B1 B1 B1

Figure 6: Allocation of Main Memory to Processes

As the game progresses, students discover the complex
management issues associated with the management of processes,
including deciding which processes to suspend, activate, or
dispatch, and how to queue and prioritize processes.

An alternative approach to playing the game is to send student
groups to the chalkboards instead of working at desks. The
students draw and manage memory slots, CPU utilization, the
process state diagram, the timeline, and process control blocks.
Rules for processes are issued to each student assigned a process
role. In this format, all groups are permitted and encouraged to
view the other groups’ boards. The game turns move
synchronously at the direction of the instructor, and at the end of
each turn all groups explain their result and discuss (and
sometimes argue) the differences in their results. In this way, it is
easier for students across groups to confer on proper outcomes
and on the most realistic interpretation of rules, and to compare
the results at the end of each turn. Controlled arguments across
groups as to ‘who is right’ seemed to prove both informative and
engaging.

4.3 Student Assessment of Operating Systems Games
Following the administration of the BattleThreads and Process
State Transition games, the students were asked to respond
anonymously to formal self-assessments about their experience
with the games. The assessment questions were tied directly to
the learning objectives or to the overall effectiveness of the game.
For example, students were asked to respond on a scale of
“Strongly disagree” through “Stongly agree” to statements like
“The Process State Transition game helped me to understand
what causes a process to transition between states.”

The self-assessment results for the BattleThreads game were very
good. A large majority of the students favored this approach to
mastering concepts. They felt they were more rapidly able to
grasp the distinction between threads and processes and the
advantages and disadvantages of different types of
communication. The students’ perceptions no doubt benefited
from the ability to get started quickly with a familiar game format
(BattleShip) and the stark contrast in the efficiency of the two
different rule sets.

One important observation is that the cost (in terms of time
invested in game issues) versus the benefits (learning) ratio may
have been higher using the second approach in which students
determine their own rules. Conceptual issues occupied almost all
of the time spent on game (rule) discussions, even though the

students were tapping into a familiar knowledge setting (the
BattleShip game) .

The self-assessment results for the Process State Transition game
were good. Most of the students agreed or strongly agreed that
the game was better than covering the same material in a lecture,
and that it helped them understand the concepts. However, there
were a small number of students who disagreed or strongly
disagreed. This suggests that the game format was not
appropriate for those particular students’ favored learning style.

One advantage to the alternate implementation of the Process
State Transition game was that the boards were more visible and
there was more room for the groups to work. There is also a
disadvantage, in that working at the boards is more familiar and
less distinctive in setting and sensation than working with game
components around desks. As a result, students may lapse into
less receptive ‘at the board’ mode. In this approach, students in
the role of processes seemed less engaged than in the straight
game-playing mode. However, this approach allowed students to
take notes on what they were doing, an activity that should have
been encouraged even in the game-playing approach, but wasn’t.

Two very clear points came out of the use of both approaches.
The first point is that several students legitimately objected to the
presumed negligible cost of context switches, state transitions,
and virtual memory operations. The explanation that it was a
simplification required to control game complexity was
understood but not satisfying. This was actually a good sign, as it
indicated the students had begun to understand some of the more
complex issues in process management. The BattleThreads game,
in particularly was probably too simplified, initially.

The second point is that it would be beneficial to provide the
game rules as a read-ahead. This provides greater initial
familiarity at the beginning of class and reduces the amount of
‘discovery’ learning as students try to determine how to execute
their role by asking peers and comparing disjoint information.
This was particularly evident for the Process State Transition
game, where many of the student groups got bogged down in
learning the game rather than in understanding the concepts it was
supposed to teach.

4.4 Faculty Assessment of Operating Systems Games
To determine the individual learning style profiles, each student
was administered the Index of Learning Styles questionnaire. It’s
important to remember that “the results provide an indication of
an individual's learning preferences and probably an even better
indication of the preference profile of a group of students (e.g. a
class), but they should not be over-interpreted.” [4] The
assessment of the effectiveness of the in-class games focuses
more on groups than on individuals.

To evaluate student mastery of the two topics covered by the use
of in-class games (processes and threads, process state transitions)
two questions on those topics were included on a major test. Less
than half of the first question was tied to the learning objectives
on process and thread management issues covered by the
BattleThreads game. The second question was completely related
to the learning objectives covered in the Process State Transition
game. The students were given the option of doing either
question. In hindsight, assessment would have been better served
if both questions were required. There were no directly
comparable questions in graded events from previous years.

Those students who chose the process state transition diagram
question performed significantly below the average score for all
questions. The use of the Process State Transition game didn’t
seem to help student performance, and may have hurt by denying
them the same amount of lecture time. Perhaps the students
didn’t get enough game time to fully understand all of the
transitions. Also, it might have made sense to assign jobs based
on learning styles - a global, active, sensory student might make a
better operating system, and a sequential, reflective student a
better process.

Those students who chose the thread management question
performed at the average score for all questions. The use of the
BattleThreads game did not appear to help or harm
accomplishment of the learning objectives.

Although the two instructors themselves had noticeably different
learning style profiles (one with central rankings, the other
significantly more visual and sensory), there was no appreciable
difference between the performances of their sections.

5 Properties of a Good Computer Science Game
Some of the most useful insights that have come out of the use of
games to teach Computer Science topics are the identification of
what topics are good candidates for a game, and how the games
should be implemented.

The most important point is that the game must be clearly linked
to specific learning objectives. Any topic that includes
knowledge or definitional items will likely convert easily to word-
based games like crossword puzzles and Jeopardy!®-style games.
Topics that involve clearly defined procedures can usually be
turned into a turn-playing game like BattleThreads or the Process
State Transition game. It’s necessary to decide early what
procedures and issues are being simplified or abstracted for the
sake of emphasizing others.

For in-class games, simple implementations are the best. Paper
boards, dice, and markers are familiar mechanisms to most
students. For games that are intended for use in or out of class, an
electronic copy of all of the materials and rules should be made
available. If automation support is required (like the Jeopardy!®
game) then it should be as platform-independent as possible.
Special care should be given to synthesizing clear and concise
rules that can be learned in a relatively short period of time. Also,
play testing is appropriate to ensure the mechanics of operating
the game don’t overwhelm the learning objective.

6 Conclusions and Future Work
The use of games to teach and reinforce Computer Science
concepts based on specific learning objectives has been a positive
experience for the faculty and the students. In the process of
working with the games, several criteria for game selection and
improvement have been determined. The use of games is
currently being considered for several other Computer Science
topics, and will be implemented, conducted, and assessed to
determine their effectiveness. The insights gained on this effort
will be used to develop a comprehensive plan for those future
efforts. One unanticipated area of future work is that the Process
State Transition game is now so well defined that it has become a
candidate for student implementation in a senior-level simulation
course.

In terms of learning styles, one of the biggest challenges ahead is
to develop a mechanism for determining which students will
respond better to a games approach (recall that some students did
not like it at all, and note that although most students liked the
Process State Transition game they performed poorly when
evaluated). Another big challenge is to determine how to provide
multiple teaching techniques, including games, without over-
burdening the instructor.

References
[1] Begg, A. J. C., “Games in the Classroom,” Centre for

Innovation in Mathematics Teaching, Available at
http://www.ex.ac.uk/cimt/games/gameclas.htm, [September
6, 2002].

[2] Bell, T., “A Low-Cost High-Impact Computer Science
Show for Family Audiences,” Australasian Computer
Science Conference, Canberra, Australia, (January 31-
February 3, 2000), 10-14.

[3] Felder, R. M. and Silverman, L. K., “Learning and Teaching
Styles in Engineering Education,” Engineering Education,
Vol. 78, No. 7, (1988), 674-681.

[4] Felder, R. M. and Solomon, B. A., “Index of Learning
Styles (ILS),” North Carolina State University, Available at
http://www2.ncsu.edu/unity/lockers/users/f/felder/public/IL
Spage.html, [September 6th, 2002].

[5] Herr, N., “The Sourcebook for Teaching Science:
Strategies, Activities, and Internet Resources,” California
State University, Northridge, Available at
http://www.csun.edu/~vceed002/, [September 6, 2002].

[6] Holt, C., “Y2K Bibliography of Experimental Economics
and Social Science Classroom Games - Using Experiments
in Teaching,” University of Virginia, Available at
http://www.people.virginia.edu/~cah2k/classy2k.htm,
[September 6, 2002].

[7] Levitin, A. and Papalaskari, M.-A., “Using Puzzles in
Teaching Algorithms,” Technical Symposium on Computer
Science Education, Covington, Kentucky, (February 27 -
March 3, 2002), 292-296.

[8] Ohlsson, L. and Johansson, C., “A Practice Driven
Approach to Software Engineering Education,” IEEE
Transactions on Education, Vol. 38, No. 3, (1995), 291-295.

[9] Rasala, R., Raab, J., and Proulx, V. K., “The SIGCSE 2001
Maze Demonstration Program,” Technical Symposium on
Computer Science Education (SIGCSE 2002), Covington,
Kentucky, (February 27 - March 3, 2002), 287-290.

[10] Robbins, S. and Robbins, K., “Empirical Exploration in
Undergraduate Operating Systems,” Technical Symposium
on Computer Science Education (SIGCSE 1999), New
Orleans, Louisiana, (March, 1999), 311-315.

[11] Robbins, S., “Experimentation with Bounded Buffer
Synchronization,” Technical Symposium on Computer
Science Education (SIGCSE 2000), Austin, Texas, (March,
2000), 330-334.

[12] Stallings, W., Operating Systems: Internals and Design
Principles, Fourth Edition, Upper Saddle River, New Jersey:
Prentice-Hall (2001).

[13] Terry, R. E. and Harb, J. N., “Using Learning Style Theory
to Improve Learning and Teaching in the Engineering
Classroom,” Frontiers in Education (FIE 1993),
Washington, DC, (November 6-9, 1993), 22-23.

http://www.ex.ac.uk/cimt/games/gameclas.htm
http://www2.ncsu.edu/unity/lockers/users/f/felder/public/ILSpage.html
http://www2.ncsu.edu/unity/lockers/users/f/felder/public/ILSpage.html
http://www.csun.edu/~vceed002/
http://www.people.virginia.edu/~cah2k/classy2k.htm

