
An Experiment in Literate Programming Using

sgml and dsssl

Revision 0.109

Mark B. Wroth

December 31, 1999

Contents

1 Purpose 2
1.1 Background . 2
1.2 Design . 4

2 The Source sgml Document 6
2.1 The Document Type Description 6

2.1.1 The ‘scrap’ element 6
2.1.2 The ‘continuation’ element 7
2.1.3 The ‘scrapref’ element 8
2.1.4 The ‘literal’ element 8

2.2 The Document Instance . 9

3 Processing Scripts 12
3.1 Supporting Functions . 13

3.1.1 Finding the ‘document’ Element 13
3.1.2 Passing Literal Data 13

3.2 The dsssl ‘Tangle’ Script . 14
3.2.1 File Output Scraps . 14
3.2.2 File Output Continuations 15
3.2.3 Scrap References . 16

3.3 The dsssl ‘Weave’ Script . 17

4 Results and Analysis 21
4.1 ‘Tangle’ Output . 21

A The Assembled SGML Input File 23

B The Assembled DSSSL Script File 27

1

Chapter 1

Purpose

1.1 Background

Literate programming is a style of computer programming in which priority
is given to the exposition of the program to the human reader, rather than
for the convenience of the computer which will execute the program. Since
computers are notoriously intolerant of changes in the way their inputs are
structured, and most computer programming languages have, at best, lim-
ited facilities for any but the simplest comments, this style requires a set
of tools which allow the author to both explain the program for the human
audience, and give precise instructions on how the program is to be read by
the computer.

The original literate programming system, WEB, was developed by Pro-
fesor Donald Knuth, who used it in the production of TEX and other pro-
grams. This system combined the TEX typesetting system with the Pascal

programming language. Subsequent developments have largely been con-
fined to adding to the choice of programming languages. Various “language-
aware” WEB variants have appeared since the original WEB system, cover-
ing a variety of programming languages. The difficulty of converting WEB

systems to other languages prompted Norman Ramsey to continue SIlvio
Levy’s work to develop a SPIDER system to assist in generating new WEBs
for different languages, but even this system does not make it trivial to add
a new language-aware WEB. Krommes, with his development of FWEB,
appears to have developed the concept of a “current language”, allowing
the same program web to contain program text in multiple languages while
retaining the language awareness and specialized typesetting of the original
WEB.

2

A second branch of literate programming development addressed the
difficulties of developing WEB systems in new languages by ignoring the
language characteristics entirely. This branch, typified by such programs
as Noweb and Nuweb, makes no attempt to “pretty print” the program
text or take advantage of syntactic knowledge of the program. Instead,
the program text is reproduced verbatim in the typeset documentation. In
addition to simplifying the use of a new programming language—since there
are no language dependencies—some programmers prefer seeing the source
code reproduced more or less as they would in the editor in which it was
written. Since a language independent WEB can be dramatically simpler
than a language aware versio, this approach has some obvious advantages
which offset its inability to take advantage of the target language.

But despite all of the activity centered around adapting WEB to various
programming languages, relatively little effort has been devoted to changing
the documentation language used. With the exception of one early effort
combining the troff typesetting system (Thimbleby’s system is confusingly
called Cweb although it is unrelated to the more commonly known literate
programming system named cweb, by Silvio Levy), almost all of the literate
programming systems use TEX as their documentation language. This may
be due to the difficulty of the typesetting task—Sewell reports that Thim-
bleby (the author of the troff version of Cweb) estimated that 95 percent
of the effort involved in that system was in this area [5, p. 144]. Recently,
a few systems have emerged which relax this—Nuweb [1] for example, can
be used to produce html with some effort, and FunnelWEB [7] attempts
to provide some formatter independence.

I am not aware, however, of any released systems which have used sgml

(or its cousin xml) markup to define a literate program, despite the appar-
ent easy fit of the concept1. This seems odd, since the structured nature
of sgml would seem to lend itself to the natural intermingling of code and
documentation that is at the heart of literate programming. Additionally,
a variety of powerful tools to author and manipulate sgml-marked up doc-
uments have emerged; such tools would appear to greatly simplify the cre-

1As I asked for (and got) assistance with the dsssl code for the "tangle" style sheet
used in this paper from the DSSSList, an email list devoted to the dsssl programming
language, Christopher R. Madden (chrism@exemplary.net) commented that he was in
the process of such a project using the xml variant of DocBook. Additionally, C.M.
Sperberg-McQueen has written a tag set for literate programming called Sweb [6]. While
he appears to have implemented at least part of the necessary processing software using
Lex and YACC, and has made papers discussing the system available on the web, he
labels the work unfinished and unpublished. It is nonetheless a very interesting system,
and shows considerable thought.

3

ation of an SGML-based WEB system. Among the readily available tools
that would seem applicable are Perl (with freely available sgml libraries),
Omnimark, and dsssl.

dsssl, the Document Style Semantics and Specification Language, is an
iso standard [3] language aimed at producing output documents from sgml-
marked up input files. Frustratingly, the release of the dsssl standard in
1996 appears not to have been accompanied by any programs implement-
ing the defined language, nor have any complete implementations appeared
since. James Clark’s dsssl implementation, Jade [2], was used for this
paper. It is free, readily available, and implements a significant fraction of
the iso-defined style language. In addition, it implements a number of ex-
tensions for sgml-to-sgml transformations which make it quite effective for
that purpose despite not implementing the iso-defined dsssl transformation
language.

This paper is an experiment in creating a “proof of concept” literate
programming system using sgml markup for documentation and code scrap
delimination and dsssl in the form of James Clark [2] processor for the
implementation language.

1.2 Design

A literate programming system has two basic processing branches, which
we will call the "tangle" and "weave" branches after the original programs
defined by Dr. Knuth [4]. The "weave" branch produces the form that is
converted into a human-readable program listing (traditionally in hard-copy
but more recently in on-line forms as well). The "tangle" branch produces
the source files as they are used by the computer itself

The "weave" branch is straightforward, at least in principle. It amounts
to using sgml to mark up a document for printing, and this is an area
where a great deal of effort has been expended. Including “pretty printing”
of the source code appears straightforward, if not necessarily trival, if we
are willing to mark up the source code. It is probably doable even if we
are not. However, for the first cut, we will simply assume that no pretty
printing is needed and very simple documentation is used. Basically, we are
not going to spend much effort here because we think that this branch is
clearly within the capabilities of sgml and sgml-based processing systems.
The simplified "weave" processing script is shown in Section 3.3, and the
complete script is reproduced in Appendix B.

The "tangle" branch is more challenging. The goal of the experiment

4

is to demonstrate:

• Assembly of code scraps;

• Insertion of assembled code scraps into other scraps;

• Output of assembled scraps to disk file.

The "tangle" script is discussed in Section 3.2, and the complete script is
in Appendix B.

In essence, we have two kinds of header scraps: scraps which will be
written to a file, and definition scraps which are included in other scraps as
part of the definition of the top level program. Either kind of scrap may be
continued by other scrap definitions, which shall be assembled in the order
they appear in the input file.

Other possible functionality to consider:

• Macro definition. Deferred for future continuation. Experience with
Nuweb indicates that this functionality may not be necessary. Addi-
tionally, sgml itself allows for a primitive macro facility in the form
of entity definitions. While this has some disadvantages from the per-
spective of clear elucidation of the concepts (the entity definitions are
hidden from the reader), the fact that some literate programming sys-
tems omit the macro capability while retaining significant functional-
ity, combined with the sgml entity facility, persuades me to defer this
capability—perhaps forever.

• Scrap numbering

• Scrap usage listing

• List of files output

5

Chapter 2

The Source sgml Document

In order to test the concepts, we need a sample document. This provides
the valid SGML document as a test case.

2.1 The Document Type Description

The basic dtd is very simple.

〈Test DTD 6〉 ≡
<!DOCTYPE document [
<!ELEMENT document o o (p|scrap|continuation)*>
<!ELEMENT p - o (#PCDATA|scrapref)*>
〈The ‘scrap’ element 7〉
〈The ‘continuation’ element 8a〉
〈The ‘scrapref’ element 8b〉
〈The ‘literal’ element 9a〉
]>

Macro referenced in scrap 9b.

2.1.1 The ‘scrap’ element

There are, in fact, a number of syntactic uses for code scrap elements:

• Beginning of an output file definition (the “unnamed section” in the
original WEB system);

• Continuation of an output file definition;

6

• Beginning of a “defined” section—one which will eventually be inserted
into an output file section;

• Continuation of a “defined” section;

• Reference to a scrap within a scrap, intended to be result in the refer-
enced scrap being inserted in the code in place of the reference;

• Reference to a scrap in documentation, where is should be treated as
a citation.

All of these might be handled with a single element type. In our initial im-
plementation we used two types, a 〈scrap〉 for all of the code definitions, and
a 〈scrapref〉 for the references to a scrap. The initial implementation ran into
trouble with nested, continued scraps, and so we split out 〈continuation〉s.

The 〈scrap〉 is the key element of the literate programming setup. It
contains program code, which may be either inserted into another scrap
or output to a file. Scraps are not necessarily defined at a single point in
the literate program; following Knuth’s convention, they may be arbitrarily
continued over many parts of the input file, and are assembled in the order
in which they appear.

It’s not clear at this point if this is the right approach, but for now we will
define the initial scrap to have an id attribute and possibly a file attribute
indicating the output file. Continuations use the 〈continuation〉 element,
with the scrap being continued identified by the continues attribute, with
its value equal to the id of the beginning scrap.

〈The ‘scrap’ element 7〉 ≡

<!ELEMENT scrap - o (title, code)>
<!ATTLIST scrap file CDATA #IMPLIED

id ID #REQUIRED
>
<!ELEMENT title o o (#PCDATA) >
<!ELEMENT code o o (#PCDATA|scrapref|literal)* >

Macro referenced in scrap 6.

2.1.2 The ‘continuation’ element

The 〈continuation〉 element continues a scrap previously opened.
Because of difficulties with mixing modes associated with having con-

tinuation scraps and a desire to clarify the syntax, we add a 〈continuation〉

7

element. This also significantly simplifies the handling of nested scraps and
their continuations.

〈The ‘continuation’ element 8a〉 ≡

<!ELEMENT continuation - o (code)>
<!ATTLIST continuation

continues IDREF #REQUIRED
>

Macro referenced in scrap 6.

2.1.3 The ‘scrapref’ element

The 〈scrapref〉 element is to be used to insert a scrap into a code section; the
id attribute specifies the (head of) the scrap to be inserted. It will also be
used in documentation in a similar manner, except that there only a cross
reference will be used.

〈The ‘scrapref’ element 8b〉 ≡

<!ELEMENT scrapref - o EMPTY>
<!ATTLIST scrapref id IDREF #REQUIRED >

Macro referenced in scrap 6.

2.1.4 The ‘literal’ element

The following definitions are used to provide a workaround to get an actual
“less than” character into the sgml output. Since the character has syn-
tactic meaning to the sgml parser, by default it is ‘escaped’ when placed in
the sgml output as character data.

By defining an element to contain the required information, we let the
dsssl processor have access to it. Defining entity references to it simplifies
the actual data entry. If particular combinations seem appropriate for a
specific programming language (for example the && used below, which acts
lie a logical and), it would make sense to define entities which make syn-
tactic sense. This would allow one to use, for example ∧ instead of
&&1.

1The basic suggestion to use a formatting-instruction to address the problem came
from David Carlisle davidc@nag.co.uk in a post to the DSSSList, Vol 3, Number 241.

8

〈The ‘literal’ element 9a〉 ≡

<!ELEMENT literal - o EMPTY
-- literal data, to be handled in the DSSSL -->

<!ATTLIST literal data CDATA #REQUIRED>
<!ENTITY lt "<literal data=’<’>"

-- ‘‘less than’’ sign-->
<!ENTITY gt "<literal data=’>’>"

-- ‘‘greater than’’ sign-->
<!ENTITY amp "<literal data=’&’>"

-- ‘‘ampersand’’ sign-->

Macro referenced in scrap 6.

2.2 The Document Instance

And here is the actual document.

"test.sgm" 9b ≡
〈Test DTD 6〉
<document>
<p>This is some sample documentation text. It is entirely
unremarkable. The included code conforms to no particular programming
language. It is chosen just to provide examples that can be examined
to see if it is being reproduced properly. Becaus of this, it
includes punctuation marks that are likely to be syntactically
significant to the various processors. This particular scrap includes
a "less than" character, "<" which is the SGML element
start character.</p>
<scrap file="scrap1.out" id="scrap1">The main code
<code>
-- scrap1 head

for i = 1 to 10
write i

rof
if a < b fi

-- include scrap2 by reference
<scrapref id="scrap2">

</scrap>

File defined by scraps 9b, 10abc.

9

We split the desired output file into multiple scraps to test how the output
entity is formed. Unfortunately, if we just give all of the scraps the same file
id, only one scrap is in the result. While expected, this means we’re going
to have to be more canny in the tangle script so that we can get the desired
concatenation.

"test.sgm" 10a ≡

<p>This is documentation of a continuation scrap, specifically the
first continuation of the first scrap. It is entirely unremarkable.</p>
<continuation continues="scrap1">
<code>
-- first continuation of scrap1

if (i < 10)
call iout

fi

</continuation>

File defined by scraps 9b, 10abc.

"test.sgm" 10b ≡

<p>This scrap is another continuation. It is unremarkable, except that
it contains two other characters likely to be an issue for the SGML
tools, specifically the "greater than" and ampersand characters (">"
and "&").</p>

<continuation continues="scrap1">
<code>

-- Second continuation of scrap1
if (i < 10) && (j > 12)

call iout
fi

</continuation>

File defined by scraps 9b, 10abc.

Now we write another scrap which will be included in an output file. Since
this is a header scrap, it is defined with the 〈scrap〉 element.

"test.sgm" 10c ≡

<p>This is a header scrap, which is intended to be included in another
scrap in order to finally be included in an output file. The scrap
documentation is entirely unremarkable.</p>

10

<scrap id="scrap2">
<title>An included scrap (scrap2)
<code>
-- included scrap2 head
while a % b < c

incr(a)
end

</scrap>

<p>Some documentation of the next scrap. It is unremarkable in every way.</p>
<continuation continues="scrap2">
-- included scrap2 continuation 1
some more code

-- include scrap3 by reference
<scrapref id="scrap3">
</continuation>

<p> And finally, documentation of the third scrap. It is entirely
unremarkable, except that it includes a reference to the scrap that
it is included in, which is <scrapref id="scrap2">.</p>
<scrap id="scrap3">A nested scrap
<code>
-- contents of scrap3
-- scrap 3 should have continuation 1

</scrap>

<p>The third scrap is continued. The documentation is entirely
unremarkable, and is extended only to provide some reasonable text in
the woven file.</p>
<continuation continues="scrap3">
-- continuation 1 of scrap 3
</continuation>
</document>

File defined by scraps 9b, 10abc.

11

Chapter 3

Processing Scripts

We create the two desired processing scripts as simple shells to begin with.
While in some ways it would be convenient to use a third style-sheet to
contain common code, by using defined scraps (in Nuweb, the literate pro-
gramming tool being used fir this experiment) we can define the code once
and use it as needed with little trouble.

"test.dsl" 12 ≡

<!-- $Id: Experiment.w,v 0.109 1999/12/31 19:35:12 penny Exp penny $ -->
<!DOCTYPE style-sheet

PUBLIC "-//James Clark//DTD DSSSL Style Sheet//EN">
<style-sheet>
<style-specification
id = "tangle">
〈DSSSL Tangle 14〉
〈Function to find the document element 13a〉

</style-specification>
<style-specification
id = "weave">
〈Weave declarations 20b〉
〈DSSSL Weave 17b, . . . 〉
〈Function to find the document element 13a〉

</style-specification>
</style-sheet>

12

3.1 Supporting Functions

This section describes several DSSSL functions which are needed at various
spots in the DSSSL code.

3.1.1 Finding the ‘document’ Element

The following function definition is from Norman Gray, norman@astro.gla.ac.uk,
and returns a singleton node list consisting of the root “document-element”
of the current document (or #f if there is no such element).

〈Function to find the document element 13a〉 ≡

(define (document-element #!optional (node (current-node)))
(let ((gr (node-property ’grove-root node)))
(if gr ; gr is the grove root

(node-property ’document-element gr default: #f)
;; else we’re in the root rule now
(node-property ’document-element node default: #f))))

Macro referenced in scrap 12.

3.1.2 Passing Literal Data

This processing rule is used to pass literal data specified in a 〈literal〉 element
through to the sgml output.

〈Output literal data 13b〉 ≡

(element literal
(make sequence
(make formatting-instruction

data: (attribute-string "data"))))

Macro referenced in scrap 14.

This requires a non standard flow object, which must be declared before
use.

〈Tangle non-standard flow objects 13c〉 ≡

(declare-flow-object-class formatting-instruction
"UNREGISTERED::James Clark//Flow Object Class::formatting-instruction")

13

Macro defined by scraps 13c, 15b.
Macro referenced in scrap 14.

3.2 The dsssl ‘Tangle’ Script

Like the original TANGLE, the "tangle" style-specification is intended to
output the code parts of the input file in the order specified by the author.
This is probably not the order they appear in the document; the document
is organized for human comprehension, while the output file must satisfy
the needs of the computer.

In essence, we have three major tasks to perform:

• Assemble a scrap from its defining pieces, which may include a header
and any number of continuation pieces;

• Insert an assembled scrap into another scrap;

• Write an assembled scrap (including any inserted scraps) to a specified
data file.

Both scraps which are to be directly written to file and those which are
used internally share the need to assemble all of their continuation scraps.
This common need is discussed in Section 3.2.2. The insertion of defined
scraps into other scraps is covered in Section 3.2.3, and the top level output
to file is the subject of Section 3.2.1.

〈DSSSL Tangle 14〉 ≡

〈Tangle non-standard flow objects 13c, . . . 〉
〈Process a file output scrap 15a〉
〈Insert a scrap via ‘scrapref’ 17a〉
〈Output literal data 13b〉

Macro referenced in scrap 12.

3.2.1 File Output Scraps

The file output scrap is in a sense the basic element of a literate program.
It provides the “top level” output to a file—which is the ultimate purpose
of the "tangle" routine!

While we’re processing the input file, we will ignore all scraps except
those which produce file output. There should be exactly one scrap with a
file attribute refering to each output file. (Perhaps we could enforce this
by defining the file attribute to be of type ID?)

14

〈Process a file output scrap 15a〉 ≡

(element scrap
(make sequence
(if (attribute-string "file")

(make entity
system-id: (attribute-string "file")
(make sequence

(process-matching-children ’code)
〈Find and process all scraps that refer to this one 16〉))

(empty-sosofo))))

Macro referenced in scrap 14.

This requires a non-standard flow object, the entity, which must be de-
clared before use.

〈Tangle non-standard flow objects 15b〉 ≡

(declare-flow-object-class entity
"UNREGISTERED::James Clark//Flow Object Class::entity")

Macro defined by scraps 13c, 15b.
Macro referenced in scrap 14.

3.2.2 File Output Continuations

The point of this scrap is to find and process all of the 〈continuation〉 scraps
of the current node. We do this by selecting from all of the descendants
of the document node (i.e. the whole document instance) the nodes which
have gi “continuation” and a continues attribute with value equal to the
id attribute of the current node.

The implementation of this raises an interesting question regarding the
dsssl language. While the processing order of a process-node-list is
defined to be that of the list order [3, Section 12.4.3], it is less clear that
the select-elements and the descendants will provide the node list in the
correct order. It appears from Chapter 10, and specifically [3, Section 10.2.5]
that select-elements will preserve the order existing in the node list that
is its argument, although this is not explicitly stated1. The nodelist provided
to select-elements is created by the descendants procedure [3, 10.2.3];

1My thanks to Brandon Ibach (bibach@infomansol.com), in discussion on the
DSSSList, for his assistance in clarifying this point.

15

here again the implication is that the document order is preserved, but this
is not explicit.

The expression needed to parse the attribute is somewhat tricky (at least
for the author, who found this to be an instructive example on the differ-
ence between quotation and quasi-quotation in dsssl). Quoting Brandon
Ibach (bibach@infomansol.com)2, who resolved the problem in a post to
the DSSSList:

The problem here is that the single quote in your version
quoted the entire expression, meaning that the “attribute-string”
symbol and the “id” string got passed in as part of the pat-
tern, rather than being evaluated and replaced with the value of
the "ID" attribute. The backquote, above, introduces a “quasi-
quote” expression, which is similar to a regular quoted expres-
sion, except that you can “unquote” certain parts of it, so that
they will be evaluated. In this case, we’re unquoting the (attribute-
string) call, such that the final result of this would be a structure
like:

(scrap (continues "ABC"))
if the current node was an element with an ID of "ABC", that is.
:)

We will reuse this code to process the continuation scraps for a scrap
reference, as well.

〈Find and process all scraps that refer to this one 16〉 ≡

(make sequence
(process-node-list

(select-elements
(descendants

(document-element (current-node)))
‘(continuation

(continues ,(attribute-string "id"))))))

Macro referenced in scraps 15a, 17a, 18b.

3.2.3 Scrap References

A 〈scrapref〉 in program code indicates that we should insert the complete
scrap referenced at this point in the program. The basic strategy is the

2in the DSSSList Digest Vol. 3, Number 242

16

same as with a file output scrap, except that we need to start by finding the
scrap head, and we need the other processing branch (when the file is not
specified).

〈Insert a scrap via ‘scrapref’ 17a〉 ≡

(element scrapref
(with-mode scrapreference

(make sequence
(process-element-with-id

(attribute-string "id")))))
(mode scrapreference

(element scrap
(make sequence

(if (attribute-string "file")
(empty-sosofo)
(make sequence

(process-matching-children ’code)
〈Find and process all scraps that refer to this one 16〉))))

)

Macro referenced in scrap 14.

3.3 The dsssl ‘Weave’ Script

In contrast to the "tangle" specification, the "weave" style-specification
produces the human readable documentation.

The only element we are using for general documentation is the 〈p〉
element for general paragraphs.

〈DSSSL Weave 17b〉 ≡

(element p
(make paragraph

(process-children)))

Macro defined by scraps 17bc, 18ab, 19ab, 20a.
Macro referenced in scrap 12.

A 〈scrapref〉 appearing in running text is set using the scraptitle mode, which
we will reuse at the beginning of each defined scrap.

〈DSSSL Weave 17c〉 ≡

17

(element scrapref
(make sequence

(with-mode scraptitle
(process-element-with-id

(attribute-string "id")))))

Macro defined by scraps 17bc, 18ab, 19ab, 20a.
Macro referenced in scrap 12.

For header scraps, we show the name of the scrap followed by an equivalence
sign, followed by the text of the scrap itself

〈DSSSL Weave 18a〉 ≡

(element scrap
(make sequence

(make paragraph
(make sequence

(with-mode scraptitle
(process-matching-children ’title))

(literal "\identical-to")))
(make paragraph

lines: ’asis
font-family-name: "Courier New"
(process-matching-children ’code))))

Macro defined by scraps 17bc, 18ab, 19ab, 20a.
Macro referenced in scrap 12.

〈DSSSL Weave 18b〉 ≡

(element (code scrapref)
(make sequence

lines: ’asis
font-family-name: "Courier New"
(process-children)
〈Find and process all scraps that refer to this one 16〉

))

Macro defined by scraps 17bc, 18ab, 19ab, 20a.
Macro referenced in scrap 12.

For continuation scraps, we do the same as with header scraps, adding at
plus-sign to indicate that this is a continuation.

18

〈DSSSL Weave 19a〉 ≡

(element continuation
(make sequence

(make paragraph
(make sequence

(with-mode scraptitle
(process-element-with-id

(attribute-string "continues")))
(literal "\identical-to +")))

(make paragraph
lines: ’asis
font-family-name: "Courier New"
(process-matching-children ’code))))

Macro defined by scraps 17bc, 18ab, 19ab, 20a.
Macro referenced in scrap 12.

The scraptitle mode sets the title of the referenced scrap. We also include
a section number indicating the section being written or continued, and, in
the case of a file output scrap, the name of the file.

This code refers to the current-node, which is the header scrap, not the
continuation. This is not exactly the desired behavior; we need a way to
number each scrap. The “traditional” way to do this is to number each
scrap sequentially; Nuweb numbers the scraps with the page number and
a suffix if there is more than one scrap on a page.

〈DSSSL Weave 19b〉 ≡

(mode scraptitle
(element scrap

(process-matching-children ’title))
(element title

(make sequence
(literal "\left-pointing-angle-bracket")
(process-children-trim)
(literal " (\section-sign")
(literal

(format-number
(element-number

(parent (current-node))) "1"))
(if (attribute-string "file"

(parent (current-node)))
(make sequence

19

font-family-name: "Courier New"
(literal "’")
(literal

(attribute-string "file"
(parent (current-node))))

(literal "’"))
(empty-sosofo))

(literal ")")
(literal "\right-pointing-angle-bracket")))

)

Macro defined by scraps 17bc, 18ab, 19ab, 20a.
Macro referenced in scrap 12.

Finally, we need a similar mechanism for passing literal data through to the
back end as in the "tangle" script.

〈DSSSL Weave 20a〉 ≡

(element literal
(make sequence
(make sequence

(literal
(attribute-string "data")))))

Macro defined by scraps 17bc, 18ab, 19ab, 20a.
Macro referenced in scrap 12.

The literal output requires the Jade extension formatting-instruction, which
must be declared.

〈Weave declarations 20b〉 ≡

(declare-flow-object-class formatting-instruction
"UNREGISTERED::James Clark//Flow Object
Class::formatting-instruction")

Macro referenced in scrap 12.

20

Chapter 4

Results and Analysis

The processing scripts shown here appear to work as advertised: "weave"
produces a (simplified) version of printed documentation, and "tangle"
produces an output file which concatentates the defined scraps as we expect.

4.1 ‘Tangle’ Output

The test source file, test.sgm, is designed to provide examples of the as-
sembly of program texts from sequences of scraps, and scraps inserted into
other scraps.

The resulting file does in fact assemble the scraps in the intended order,
as shown below:

-- scrap1 head
for i = 1 to 10

write i
rof
if a < b fi

-- include scrap2 by reference

-- included scrap2 head
while a % b < c
incr(a)

end
-- included scrap2 continuation 1
some more code

-- include scrap3 by reference

21

-- contents of scrap3
-- scrap 3 should have continuation 1
-- continuation 1 of scrap 3

-- first continuation of scrap1
if (i < 10)

call iout
fi

-- Second continuation of scrap1
if (i < 10) && (j > 12)

call iout
fi

The inserted scrap is assembled from the two scraps intended, and the
basic file is assembled from it and the designated file output scrap..

22

Appendix A

The Assembled SGML Input
File

The complete sgml input file (sample document) is included here for refer-
ence.

<!DOCTYPE document [
<!ELEMENT document o o (p|scrap|continuation)*>
<!ELEMENT p - o (#PCDATA|scrapref)*>

<!ELEMENT scrap - o (title, code)>
<!ATTLIST scrap file CDATA #IMPLIED

id ID #REQUIRED
>
<!ELEMENT title o o (#PCDATA) >
<!ELEMENT code o o (#PCDATA|scrapref|literal)* >

<!ELEMENT continuation - o (code)>
<!ATTLIST continuation

continues IDREF #REQUIRED
>

<!ELEMENT scrapref - o EMPTY>
<!ATTLIST scrapref id IDREF #REQUIRED >

23

<!ELEMENT literal - o EMPTY
-- literal data, to be handled in the DSSSL -->

<!ATTLIST literal data CDATA #REQUIRED>
<!ENTITY lt "<literal data=’<’>"

-- ‘‘less than’’ sign-->
<!ENTITY gt "<literal data=’>’>"

-- ‘‘greater than’’ sign-->
<!ENTITY amp "<literal data=’&’>"

-- ‘‘ampersand’’ sign-->

]>

<document>
<p>This is some sample documentation text. It is entirely
unremarkable. The included code conforms to no particular programming
language. It is chosen just to provide examples that can be examined
to see if it is being reproduced properly. Becaus of this, it
includes punctuation marks that are likely to be syntactically
significant to the various processors. This particular scrap includes
a "less than" character, "<" which is the SGML element
start character.</p>
<scrap file="scrap1.out" id="scrap1">The main code
<code>
-- scrap1 head
for i = 1 to 10

write i
rof
if a < b fi

-- include scrap2 by reference
<scrapref id="scrap2">

</scrap>

<p>This is documentation of a continuation scrap, specifically the
first continuation of the first scrap. It is entirely unremarkable.</p>
<continuation continues="scrap1">
<code>
-- first continuation of scrap1
if (i < 10)

call iout

24

fi

</continuation>
<p>This scrap is another continuation. It is unremarkable, except that
it contains two other characters likely to be an issue for the SGML
tools, specifically the "greater than" and ampersand characters (">"
and "&").</p>

<continuation continues="scrap1">
<code>
-- Second continuation of scrap1
if (i < 10) && (j > 12)

call iout
fi

</continuation>
<p>This is a header scrap, which is intended to be included in another
scrap in order to finally be included in an output file. The scrap
documentation is entirely unremarkable.</p>
<scrap id="scrap2">
<title>An included scrap (scrap2)
<code>
-- included scrap2 head
while a % b < c
incr(a)

end

</scrap>

<p>Some documentation of the next scrap. It is unremarkable in every way.</p>
<continuation continues="scrap2">
-- included scrap2 continuation 1
some more code

-- include scrap3 by reference
<scrapref id="scrap3">
</continuation>

<p> And finally, documentation of the third scrap. It is entirely
unremarkable, except that it includes a reference to the scrap that
it is included in, which is <scrapref id="scrap2">.</p>

25

<scrap id="scrap3">A nested scrap
<code>
-- contents of scrap3
-- scrap 3 should have continuation 1

</scrap>

<p>The third scrap is continued. The documentation is entirely
unremarkable, and is extended only to provide some reasonable text in
the woven file.</p>
<continuation continues="scrap3">
-- continuation 1 of scrap 3
</continuation>
</document>

26

Appendix B

The Assembled DSSSL
Script File

The complete dsssl script file is included here for reference.

<!-- $Id: Experiment.w,v 0.109 1999/12/31 19:35:12 penny Exp penny $ -->
<!DOCTYPE style-sheet
PUBLIC "-//James Clark//DTD DSSSL Style Sheet//EN">

<style-sheet>
<style-specification
id = "tangle">

(declare-flow-object-class formatting-instruction
"UNREGISTERED::James Clark//Flow Object Class::formatting-instruction")

(declare-flow-object-class entity
"UNREGISTERED::James Clark//Flow Object Class::entity")

(element scrap
(make sequence
(if (attribute-string "file")
(make entity

system-id: (attribute-string "file")
(make sequence
(process-matching-children ’code)

27

(make sequence
(process-node-list

(select-elements
(descendants
(document-element (current-node)))
‘(continuation

(continues ,(attribute-string "id"))))))
))

(empty-sosofo))))

(element scrapref
(with-mode scrapreference
(make sequence

(process-element-with-id
(attribute-string "id")))))

(mode scrapreference
(element scrap
(make sequence

(if (attribute-string "file")
(empty-sosofo)
(make sequence
(process-matching-children ’code)

(make sequence
(process-node-list
(select-elements

(descendants
(document-element (current-node)))
‘(continuation

(continues ,(attribute-string "id"))))))
))))

)

(element literal
(make sequence
(make formatting-instruction
data: (attribute-string "data"))))

28

(define (document-element #!optional (node (current-node)))
(let ((gr (node-property ’grove-root node)))
(if gr ; gr is the grove root

(node-property ’document-element gr default: #f)
;; else we’re in the root rule now
(node-property ’document-element node default: #f))))

</style-specification>
<style-specification
id = "weave">

(declare-flow-object-class formatting-instruction
"UNREGISTERED::James Clark//Flow Object
Class::formatting-instruction")

(element p
(make paragraph
(process-children)))

(element scrapref
(make sequence
(with-mode scraptitle

(process-element-with-id
(attribute-string "id")))))

(element scrap
(make sequence
(make paragraph

(make sequence
(with-mode scraptitle

(process-matching-children ’title))
(literal "\identical-to")))

(make paragraph
lines: ’asis
font-family-name: "Courier New"

29

(process-matching-children ’code))))

(element (code scrapref)
(make sequence

lines: ’asis
font-family-name: "Courier New"
(process-children)

(make sequence
(process-node-list
(select-elements

(descendants
(document-element (current-node)))
‘(continuation

(continues ,(attribute-string "id"))))))

))

(element continuation
(make sequence
(make paragraph

(make sequence
(with-mode scraptitle

(process-element-with-id
(attribute-string "continues")))

(literal "\identical-to +")))
(make paragraph

lines: ’asis
font-family-name: "Courier New"
(process-matching-children ’code))))

(mode scraptitle
(element scrap
(process-matching-children ’title))

(element title
(make sequence

(literal "\left-pointing-angle-bracket")
(process-children-trim)
(literal " (\section-sign")
(literal

30

(format-number
(element-number
(parent (current-node))) "1"))

(if (attribute-string "file"
(parent (current-node)))

(make sequence
font-family-name: "Courier New"
(literal "’")
(literal

(attribute-string "file"
(parent (current-node))))

(literal "’"))
(empty-sosofo))

(literal ")")
(literal "\right-pointing-angle-bracket")))

)

(element literal
(make sequence
(make sequence
(literal

(attribute-string "data")))))

(define (document-element #!optional (node (current-node)))
(let ((gr (node-property ’grove-root node)))
(if gr ; gr is the grove root

(node-property ’document-element gr default: #f)
;; else we’re in the root rule now
(node-property ’document-element node default: #f))))

</style-specification>
</style-sheet>

31

Bibliography and Indices

32

Bibliography

[1] Preston Briggs. Nuweb: A Literate Programming System. CTAN, CTAN,
1998. With local modifications and compilation for Windows NT.

[2] James Clark. JADE: James’ DSSSL Engine. http://www.jclark.com,
1998. See http://www.jclark.com.

[3] International Organization for Standardization and the International
Electrotechnical Commission. ISO/IEC 10179:1996 Document Style Se-
mantics and Specification Language (DSSSL), 1996.

[4] Donald Ervin Knuth. Literate Programming. Center for the Study of
Language and Information, Leland Stanford University, Stanford, Cali-
fornia, 1991.

[5] Wayne Sewell. Weaving a Program: Literate Programming in WEB. Van
Nostrand Reinhold, New York, New York, 1989.

[6] C. M. Sperberg-McQueen. SWEB: An SGML tag set for literate pro-
gramming. ”This incomplete, unpublished document is distributed pri-
vately for comment by friends and colleagues; it is not now a formal
publication and should not be quoted in published material.”, 1992–
1996.

[7] Ross N. Williams. FunnelWeb User’s Manual. Adelaide, Australia, v1.0
for FunnelWeb v3.0 edition, May 1992.

Cross References

Identifiers

#IMPLIED: 7.
#PCDATA: 6, 7.

33

#REQUIRED: 7, 8a, 8b, 9a.
&: 9a, 10b.
>: 9a, 10b.
<: 9a, 9b, 10abc.
CDATA: 7, 9a.
code: 7, 8a, 9b, 10abc, 15a, 17a, 18ab, 19a.
document: 6, 9b, 10c, 12, 13a, 16.
entity: 15a, 15b.
formatting-instruction: 13b, 13c, 20b.
ID: 7.
IDREF: 7, 8ab.
literal: 6, 7, 9a, 13b, 14, 18a, 19ab, 20a.
p: 6, 9b, 10abc, 17b.
scrap: 6, 7, 9b, 10abc, 14, 15a, 17a, 18a, 19b.
scrapref: 6, 7, 8b, 9b, 10c, 14, 17ac, 18b.
title: 7, 10c, 18a, 19b.

Files

"test.dsl" Defined by scrap 12.

"test.sgm" Defined by scraps 9b, 10abc.

Scraps

〈DSSSL Tangle 14〉 Referenced in scrap 12.

〈DSSSL Weave 17bc, 18ab, 19ab, 20a〉 Referenced in scrap 12.

〈Find and process all scraps that refer to this one 16〉 Referenced in scraps 15a, 17a,

18b.

〈Function to find the document element 13a〉 Referenced in scrap 12.

〈Insert a scrap via ‘scrapref’ 17a〉 Referenced in scrap 14.

〈Output literal data 13b〉 Referenced in scrap 14.

〈Process a file output scrap 15a〉 Referenced in scrap 14.

〈Tangle non-standard flow objects 13c, 15b〉 Referenced in scrap 14.

〈Test DTD 6〉 Referenced in scrap 9b.

〈The ‘continuation’ element 8a〉 Referenced in scrap 6.

〈The ‘literal’ element 9a〉 Referenced in scrap 6.

〈The ‘scrap’ element 7〉 Referenced in scrap 6.

〈The ‘scrapref’ element 8b〉 Referenced in scrap 6.

〈Weave declarations 20b〉 Referenced in scrap 12.

34

Index

Cweb, 3
cweb, 3

DocBook, 3
DSSSL, 1, 3, 4, 8, 13–17, 27, 36
DTD, 6

Emacs, 36

flow objects, non-standard, 13, 15
FunnelWEB, 3
FWEB, 2

GI, 15

HTML, 3
hyperref, 36

ISO, 4

Jade, 4, 20, 36
Jade extensions, 13, 15

Lex, 3

non-standard flow objects, 13, 15
Noweb, 3
Nuweb, 3, 5, 12, 19, 36

Omnimark, 4

Pascal, 2
pdflatex, 36
Perl, 4

SGML, 1, 3–6, 8, 13, 23
SPIDER, 2
Sweb, 3

TANGLE, 14
troff, 3

WEB, 2–4, 6

XML, 3

YACC, 3

35

Colophon

This paper was written primarily with Emacs as the text editor, and Nuweb

as the literate programming system. pdflatex (with the hyperref pack-
age) was the primary document compiler, and Jade was the dsssl processor.

36

This is some sample documentation text. It is entirely unremarkable. The included code conforms to no
particular programming language. It is chosen just to provide examples that can be examined to see if it is
being reproduced properly. Becaus of this, it includes punctuation marks that are likely to be syntactically
significant to the various processors. This particular scrap includes a "less than" character, "<" which is the
SGML element start character.
〈The main code (§1'scrap1.out')〉≡
-- scrap1 head
 for i = 1 to 10
 write i
 rof
 if a < b fi
-- include scrap2 by reference

〈An included scrap (scrap2) (§2)〉≡ +
-- included scrap2 continuation 1
some more code

-- include scrap3 by reference

〈A nested scrap (§3)〉≡ +
-- continuation 1 of scrap 3

This is documentation of a continuation scrap, specifically the first continuation of the first scrap. It is
entirely unremarkable.
〈The main code (§1'scrap1.out')〉≡ +

-- first continuation of scrap1
 if (i < 10)
 call iout
 fi

This scrap is another continuation. It is unremarkable, except that it contains two other characters likely to
be an issue for the SGML tools, specifically the "greater than" and ampersand characters (">" and "&").
〈The main code (§1'scrap1.out')〉≡ +

 -- Second continuation of scrap1
 if (i < 10) && (j > 12)
 call iout
 fi
This is a header scrap, which is intended to be included in another scrap in order to finally be included in an
output file. The scrap documentation is entirely unremarkable.
〈An included scrap (scrap2) (§2)〉≡

-- included scrap2 head
while a % b < c
 incr(a)
end

Some documentation of the next scrap. It is unremarkable in every way.
〈An included scrap (scrap2) (§2)〉≡ +
-- included scrap2 continuation 1
some more code

-- include scrap3 by reference

〈A nested scrap (§3)〉≡ +
-- continuation 1 of scrap 3
 And finally, documentation of the third scrap. It is entirely unremarkable, except that it includes a
reference to the scrap that it is included in, which is 〈An included scrap (scrap2) (§2)〉.
〈A nested scrap (§3)〉≡
-- contents of scrap3
-- scrap 3 should have continuation 1

The third scrap is continued. The documentation is entirely unremarkable, and is extended only to provide
some reasonable text in the woven file.
〈A nested scrap (§3)〉≡ +
-- continuation 1 of scrap 3

	Purpose
	Background
	Design

	The Source SGML Document
	The Document Type Description
	The `scrap' element
	The `continuation' element
	The `scrapref' element
	The `literal' element

	The Document Instance

	Processing Scripts
	Supporting Functions
	Finding the `document' Element
	Passing Literal Data

	The DSSSL `Tangle' Script
	File Output Scraps
	File Output Continuations
	Scrap References

	The DSSSL `Weave' Script

	Results and Analysis
	`Tangle' Output

	The Assembled SGML Input File
	The Assembled DSSSL Script File

