
DocBook-Based Literate Programming

1.4

Mark Wroth

April 12, 2001

This document, and the literate programming system described herein, is
copyright c© 2001 by Mark Wroth. Permission is granted for the reproduction,
use, and modification of this system provided that

• No charge is made for the use of this system. A nominal charge for re-
production of the media on which the system is provided may be levied,
however.

• The complete literate programming source of the system is made available
to the user.

• Modifications of this system are clearly identified as derivative works. Pro-
vision must be made to identify the author of the changes, and to provide
error reports to the modifier rather than the original author.

Works created using this system (as opposed to modifications of this system
itself) are subject to whatever copyright or use provisions may be imposed by
the authors of those works; the use of this system shall not be the basis for any
change or modification of the rights of such authors.

The author of this system, in permitting its general use, makes no warranty
of its suitability for any purpose nor any guarantee of its correctness. In other
words, you are welcome to use this system, but you do so at your own risk.

1

Contents

1 Functional Description 4
1.1 Purpose of the Functional Description 4
1.2 Project References . 5

2 System Summary 6
2.1 Background . 6

2.1.1 Literate Programming . 6
2.1.2 SGML and XML . 7
2.1.3 DocBook . 8

2.2 Objectives . 8
2.3 Existing Methods and Procedures 8
2.4 Proposed Methods and Procedures 9

2.4.1 Summary of Improvements 9
2.4.2 Summary of Impacts . 10
2.4.3 Assumptions and Constraints 10

2.5 Detailed Characteristics . 10
2.6 Design Considerations . 10

2.6.1 System Description . 10
2.6.2 System Functions . 10
2.6.3 Flexibility . 11

2.7 Environment . 11
2.7.1 Equipment Environment 11
2.7.2 Support Software Environment 11

2.8 System Development Plan . 12

3 DTD Implementation 13
3.1 Purpose . 13
3.2 Top Level Organization . 13
3.3 The programlisting Customization 13

3.3.1 The ‘literalchar’ element 14

4 SGML Tangle 16
4.1 Purpose . 16
4.2 Implementation . 16

2

4.3 Implementation Notes . 18

5 SGML Weave 19
5.1 Purpose . 19
5.2 Minimum DocBook Customization Layer 19
5.3 The literalchar Processing Rules 20
5.4 The programlisting Customizations 20

5.4.1 Print Customizations . 20
5.4.2 HTML Customizations . 25

6 Sample Literate Program 29
6.1 The Sample Document . 29

7 System Performance 31
7.1 Sample Code Output . 31
7.2 Sample Woven Output . 32
7.3 Evaluation . 32

3

Chapter 1

Functional Description

The DocBook-based Literate Programming system provides a mechanism to
write literate programs using a minor extension of the Standard Generalized
Markup Language (SGML) DocBook Document Type Definition, Document
Type Declaration (DTD).

The system consists of two main parts:

• A DTD that extends DocBook to add the logic needed for literate pro-
gramming. These are relatively minor extensions to the basic DTD. The
details are discussed in Chapter 3.

• Document Style Semantics Specification Language (DSSSL) style sheets
that, together with a DSSSL engine that implements some of James Clark’s
extensions, serve as “weave” and “tangle” processors. These style sheets
are discussed in Chapters 5 and 4, respectively.

This document also discusses the design considerations behind the imple-
mentation, and provides a short sample document that serves as an example of
how the DTD is used (and serves as a simple test case).

1.1 Purpose of the Functional Description

This functional description for “DocBook-based Literate Programming” is writ-
ten to provide:

1. The system requirements to be satisfied which will serve as a basis for the
system design.

2. Information on performance requirements, preliminary design considera-
tions, and user impacts including fixed and continuing costs.

3. A basis for development of system tests.

4

1.2 Project References

Documents significant to this project are discussed in the bibliography.

5

Chapter 2

System Summary

2.1 Background

2.1.1 Literate Programming

Literate programming is a style of computer programming pioneered by Profes-
sor Donald Knuth in the early 1980’s (the defining paper was published in The
Computer Journal in May 1984, at which point the earliest literate programming
system, WEB, was already functional).

The key tenent of literate programming is that computer programs are writ-
ten to be read and understood by human beings as well as computers—and the
organization of the program’s source code should allow the program author to
explain the purpose and implementation of the code to the human audience. In
Knuth’s own words, “Instead of imagining that our main task is to instruct a
computer what to do, let us concentrate rather on explaining to human beings
what we want a computer to do.”1

To this end, a literate programming system typically supports several func-
tions:

• Mechanisms to extract or otherwise make available to the computer the
code instructions making up the computer program in a form usable by
the computer (e.g. in a form suitable for submission to the compiler),
and to translate the source code and documentation into appropriately
rendered documentation.

• The ability to write code documentation using the full range of typo-
graphic features used in normal typesetting.

• The ability to arbitrarily intermingle code and documentation.
1“Literate Programming,” originally published in The Computer Journal, May 1984,

quoted in [2, p. 99]

6

• The ability to arbitrarily reorder code fragments so that the exposition of
the program design may precede in an order appropriate for the human
reader, while retaining the instruction order required for the computer to
correctly execute the program.

The process of making the code instructions available to the computer is called
the “tangle” phase of processing, while the process of rendering the documenta-
tion is called the “weave” phase. These names derive from the names of the two
programs making up the original WEB system that performed these functions.

Some literate programming processors, including Knuth’s original WEB sys-
tem, additionally “pretty print” the programming language instructions (for ex-
ample, by setting the reserved words of the language in boldface type). This
pretty print capability is not universal, and in fact is not desired by some pro-
grammers. Another capability sometimes found is the ability to define macros
in the literate programming system, usually to supplement the capabilities of
the underlying programming language.

Since the introduction of Knuth’s WEB system, which was used for the
TEX and MetaFONT programs, a variety of other literate programming sys-
tems have appeared, as have a number of other mechanisms for improved com-
menting of source code2. A complete review of the available systems is be-
yond the scope of this discussion. However, experience with the original WEB

system, John Krommes’ FWEB, and Preston Brigg’s Nuweb literate program-
ming systems, and the doc LATEX 2ε documentation system and Normal Walsh’s
DocBook-based DSSSL style sheet documentation systems (both of which may
be characterized as improved commenting systems) has been a significant factor
in defining the characteristics desired in this system.

2.1.2 SGML and XML

The Standard Generalized Markup Language is defined in International Or-
ganization for Standardization (ISO) Standard ISO 8879:1986, and defines a
mechanism for defining markup languages and enforcing certain relationships
among the data contained in appropriately marked up documents. Among other
things, SGML provides a clear mechanism for making explicit what parts of a
document have what role, and does so in a way that encourages the construction
of tools able to parse such documents—and hopefully do useful things with the
parsed information.

In the late 1990’s SGML was supplemented by Extensible Markup Lan-
guage (XML), which is a simplified SGML application designed to make it eas-
ier to construct parsers and other processing tools. In general, XML has the
same basic functionality as SGML, with some of the lesser-used features of the
language omitted. Tools that can process SGML documents can also usually

2The boundary between “literate programming” systems and “improved commenting”
mechanisms is somewhat subjective. However, for the purposes of this discussion, a system is
considered a literate programming system if it offers the capabilities listed above.

7

process XML documents; it is not generally the case than an XML tool can
process a general SGML document.

2.1.3 DocBook

One of the useful features of SGML is the ability to create DTDs that describe
the structure of documents and the markup that makes that structure explicit.
This permits the creation of general document types—and the tools to process
them.

One such document type is DocBook, a document type created for computer-
oriented technical books. DocBook is maintained by Organization for the
Advancement of Structured Information Standards (OASIS), and has evolved
into a flexible and robust document definition, supported by a variety of tools.
DocBook exists in both SGML and XML versions.

In particular, Norman Walsh has defined a set of DSSSL style sheets that
process DocBook documents and produce printed (or Hypertext Markup Lan-
guage (HTML)) output renderings. These style sheets are both extensible and
customizable, and serve as a significant base for computer-oriented documentation—
such as a literate program.

2.2 Objectives

This project creates a set of extensions to the DocBook SGML DTD to allow
its use for literate programming markup. The resulting system shall

• Provide a mechanism to extract program files from the literate program-
ming source in appropriate forms for their use as source code in the in-
tended programming language or languages.

• Permit the use of existing DocBook-based tools with only minor modi-
fications (ideally none) to produce documentation of software projects.

2.3 Existing Methods and Procedures

There are a variety of literate programming systems in use at the current time.
In general, they fall into three main categories:

• Language-aware systems. These systems are designed to support a single
computer programming language, and are marked by the ability to do
limited parsing of code sections, usually accompanied by “pretty printing”
of the computer source code. Knuth’s original WEB system falls into
this category. Most language aware systems use TEX as their typesetting
system.

8

• Language-independent systems. These systems attempt no parsing of the
code sections. Most language-independent systems use TEX as their type-
setting systems, although there is some move towards HTML as a docu-
mentation language.

• Comment-based systems. These systems extend the comment structures
of the supported language in an attempt to provide usable documentation.
Examples of such systems are the “doc” system used to document LATEX 2ε
packages, and—I believe—the “Javadoc” system.

Most or all of these existing systems target a specific output format, usually
the printed page, rendered via the TEX typesetting system. In part, this is a
historical accident; the first literate programming system used TEX. However,
attempts to implement other documentation languages (notably an attempt to
write a ‘C’ language literate programming system with troff as the docu-
mentation processor) indicate that the demands on the documentation branch
of a literate programming system are relatively taxing. This has undoubtedly
contributed to the limited number of output forms supported, although some
attempts to support HTML have been made.

However, I am not aware of any literate programming systems based on
SGML markup of the source code. This omission seems unfortunate, given
the obvious applicability of SGML markup to the process of defining a literate
program.

2.4 Proposed Methods and Procedures

This project implements an SGML markup-based literate programming sys-
tem. Literate computer programs are written using some form of text editor—
preferably, but not necessarily an SGML-aware editor. The documentation
and programming language code is marked up using an extension of the Doc-

Book DTD. Once the literate program is written (partially or completely), it
is processed using a variant of the Jade DSSSL engine with either a “tangle”
style-sheet (which is a stand-alone style sheet provided by this project), or a
“weave” style sheet (which extends the DocBook Modular Style Sheets

in several small but important ways).

2.4.1 Summary of Improvements

Creating an SGML-based literate programming system makes it possible to
exploit the wide variety of SGML (or, with minor variations, XML) tools. In
particular, this makes it straightforward to produce different output formats,
such as a printed version or an HTML version.

The use of SGML also separates the definition of the document markup from
the definition of the processing tools. In principle, this allows many different
tools to be used with literate programs written with this system. This advantage
is largely theoretical at this point, however.

9

2.4.2 Summary of Impacts

2.4.3 Assumptions and Constraints

It is assumed that the user of this system is familiar with the use of SGML-based
tools, and the DocBook DTD.

The processing DSSSL style sheets assume the presence of selected DSSSL
extensions implmented in James Clark’s Jade engine (specifically the “entity”
and “processing-instruction” flow objects). This capability is necessary to use
the specific style sheets provided by this project, but the use of the DTD is not
affected.

2.5 Detailed Characteristics

2.6 Design Considerations

• Minimize changes to the DocBook DTD to allow processing using existing
output tools.

• Keep the existing <programlisting> as the basis for a scrap (again to
minimize changes needed in the output processors).

• Use added attributes for file output, definition and reference to continued
and continuation scraps. Use of both continued and continuation markup
is semantically redundant, but will make processing of the “weave” branch
easier—I think.

• Use <xref> for reference to definition scraps, and the xreflabel attribute
for the definition scrap title. Again, this is driven by a desire to minimize
changes that would impact the output processing tools.

• Make maintaining, modifying, and adding this functionality to other doc-
ument types as easy as possible (see Section 2.6.3).

2.6.1 System Description

2.6.2 System Functions

This system performs three basic functions:

• Provide a DTD that allows the markup of literate programs, including
a flexible system for describing the purpose and implementation of the
computer program (based on DocBook) and markup of the program code
itself to allow the literate program to produce the computer instructions.

• A tangle mechanism that actually produces the computer instructions
from the literate programming source code. This implementation, SGMLTangle.dsl
is a DSSSL style sheet using extensions to the DSSSL standard as imple-
mented in James Clark’s Jade DSSSL engine.

10

• A weave implementation that renders the literate programming source
into useful documentation. This style specification, SGMLWeave.dsl, ex-
tends Norman Walsh’s Modular DocBook Style Sheets. It provides both
print and HTML output, in the style sheets print and html respectively.

2.6.3 Flexibility

It is the intention of this system to:

• Maintain the ability to update the extensions to new versions of Doc-

Book as they are published.

• Make the extensions as easy as possible to to move between the SGML
and XML versions.

• Make it as simple as possible to add the literate programming functionality
to other DocBook-based DTDs.

• Provide a basis on which other implementations of the tangle and weave

functions could be built to support other tool chains.

2.7 Environment

2.7.1 Equipment Environment

The hardware required to use this system is defined by the selected software tools
(in particular the SGML processor). Development and testing was accomplished
on 32-bit Windows-based computers.

2.7.2 Support Software Environment

Effective use of this system requires three major classes of supporting software.
Except as noted with regard to the tangle application, it is not necessary
that the actual supporting software used in the development of this system be
available.

Programming Editor

Some form of text editor is needed to write the literate program. The minimum
necessary functionality is the ability to write a plain text output file.3

The authoring process will be much easier, however, if the editor supports
both SGML markup and the programming language or languages in which the
code is being written. A customizable editor such as emacs is probably a useful
choice.

3Actually, even this is an overstatement: the editor has to be able to produce SGML input
files compatible with the SGML and DSSSL processors being used. While this is usually a
plain text file, there are other ways to implment SGML systems.

11

SGML Processors

The literate programming DTD extends the DocBook DTD, and therefore
requires the underlying DTD. This implementation specifically uses the SGML
DTD, Version 4.1 as the basis for its extension.

To use this system for literate programming without additional customiza-
tion, a DSSSL engine that implements James Clark’s entity and processing-instruction
extensions to the DSSSL standard is needed. The Jade or OpenJade engines
meet this requirement.

The weave style sheet is based on Norman Walsh’s Modular DocBook Style
Sheets [5], which must be available if the SGMLWeave.dsl style specification is
used.

As an SGML application, of course, documents marked up with this DTD
can, in principle, be used by any SGML-compliant tool.

While this DTD and the associated DSSSL style sheets were written for the
SGML version of the DocBook DTD, it should require only minor changes to
re-implement this system in XML. This has not, however, been tested.

2.8 System Development Plan

This system has been implemented using the Nuweb literate programming
processor, which is a TEX-based system. The choice to implement the sys-
tem in this way was a “bootstrapping” choice; until this system achieved basic
functionality, it would be difficult to implement the system in an SGML-based
system.

Because the original implementation was written using Nuweb, basic main-
tenance of the system is currently intended to continue in that system. Eventu-
ally, the system may be translated into itself, but this is not currently planned.

Once basic functionality has been demonstrated, this system will be made
publically available by publication on the World-Wide Web. Future modifica-
tions and extensions may or may not be made, depending on the author’s use
of the system and feedback from other users (if any).

12

Chapter 3

DTD Implementation

3.1 Purpose

3.2 Top Level Organization

"dblp.dtd" 13a ≡
<!--

DBLP.DTD; a literate programming DTD based on DocBook

PUBLIC

"-//Mark Wroth//DTD DocBook V4.1-Based Extension Literate Programming 1.0//EN"

-->

〈Add <programlisting> attributes 14a〉
<!ENTITY % programlisting.element "IGNORE">

<!ENTITY % docbook PUBLIC "-//OASIS//DTD DocBook V4.1//EN">

%docbook;

〈Redefine the <programlisting> element 13b〉
〈The ‘literalchar’ element 14b〉

3.3 The programlisting Customization

We will set up the <programlisting> element to ignore the DocBook defined
definition and substitute our own.

〈Redefine the <programlisting> element 13b〉 ≡
<!ELEMENT programlisting - -

((CO | LineAnnotation | literalchar | %para.char.mix;)+)>

Macro referenced in scrap 13a.

To the attribute list, we add the attributes that we will use for literate program-
ming:

13

file The file name the code is to be written to. This attribute is required for
the scraps which begin output files.

continuedfrom The ID of the scrap this scrap continues.

continuedin The ID of the scrap this file continues.

We also make use of several of the attributes already defined for programlisting:

ID Unique identifier for this scrap; required for scraps which are either contin-
ued or continue others.

xreflabel The title of the scrap; used for the head of a definition scrap.

〈Add <programlisting> attributes 14a〉 ≡
<!ENTITY % local.programlisting.attrib "

file CDATA #IMPLIED -- file name for output file --

continuedfrom IDREF #IMPLIED

continuedin IDREF #IMPLIED ">

Macro referenced in scrap 13a.

The choice to use both a continuedfrom and a continuedin attribute allows
the creation of a doubly-linked list for each code section. This permits the
programmer to order the code scraps in any desired sequence, while permitting
the processing system to easily traverse the scraps that make up the section.

While one or the other direction of the links between scraps is sematically
redundant in an absolute sense (with adequate effort, the backward links could
be constructed from the forward set, and vice-versa), including both sets of links
makes construction of the processing tools much simpler.

3.3.1 The ‘literalchar’ element

The following definitions are used to provide a workaround to get an actual
“less than” character into the SGML output. Since the character has syntactic
meaning to the SGML parser, by default it is ‘escaped’ when placed in the
SGML output as character data.

By defining an element to contain the required information, we let the DSSSL
processor have access to it. Defining entity references to it simplifies the actual
data entry. If particular combinations seem appropriate for a specific program-
ming language it would make sense to define entities which make syntactic sense.
This would allow one to use, for example &logicaland; instead of &&1.

〈The ‘literalchar’ element 14b〉 ≡
1The basic suggestion to use a formatting-instruction to address the problem came from

David Carlisle davidc@nag.co.uk in a post to the DSSSList, Vol 3, Number 241, although the
actual implementation does not follow his suggestions precisely.

14

<!ELEMENT literalchar - o EMPTY

-- literal data, to be handled in the DSSSL -->

<!ATTLIST literalchar data CDATA #REQUIRED>

<!ENTITY lessthan "<literalchar data=’<’>"

-- ‘‘less than’’ sign-->

<!ENTITY greaterthan "<literalchar data=’>’>"

-- ‘‘greater than’’ sign-->

<!ENTITY ampersand "<literalchar data=’&’>"

-- ‘‘ampersand’’ sign-->

Macro referenced in scrap 13a.

15

Chapter 4

SGML Tangle

4.1 Purpose

The SGMLTangle style sheet performs the “tangle” phase of literate program-
ming. In other words, it takes the literate programming code and rearranges it
so that it is acceptable to the computer as a computer program (assuming, of
course, that the programmer has correctly written the program!)

4.2 Implementation

In order to make it as simple as possible to bring this system up on a new
machine, this style sheet is presented as a single scrap. Notes on the program
follow the implementation scrap.

"SGMLTangle.dsl" 16 ≡

<!DOCTYPE style-sheet

PUBLIC "-//James Clark//DTD DSSSL Style Sheet//EN">

<style-sheet>

<style-specification

id = "tangle">

<style-specification-body>

(declare-flow-object-class entity

"UNREGISTERED::James Clark//Flow Object Class::entity")

(declare-flow-object-class formatting-instruction

"UNREGISTERED::James Clark//Flow Object Class::formatting-instruction")

(default (process-node-list (element-children)))

(element programlisting

(make sequence

(if (attribute-string "file")

16

(make entity

system-id: (attribute-string "file")

(make sequence

(process-children)

(if (attribute-string "continuedin")

(with-mode continuation

(process-element-with-id

(attribute-string "continuedin")))

(empty-sosofo))))

(empty-sosofo))))

(element (programlisting xref)

(with-mode definition

(process-element-with-id

(attribute-string "linkend"))))

(mode definition

(element programlisting

(make sequence

(process-children)

(if (attribute-string "continuedin")

(with-mode continuation

(process-element-with-id

(attribute-string "continuedin")))

(empty-sosofo)))))

(mode continuation

(element programlisting

(make sequence

(process-children)

(if (attribute-string "continuedin")

(with-mode continuation

(process-element-with-id

(attribute-string "continuedin")))

(empty-sosofo)))))

(element literalchar

(make sequence

(make formatting-instruction

data: (attribute-string "data"))))

〈Define element-children function 18〉

</style-specification-body>

</style-specification>

</style-sheet>

(element-children snl) finds all of the elements that are direct children of
singleton nodelist “snl”. This is useful for filtering, processing, and counting,

17

when you’re not interested in any text, PI, or comment nodes. This func-
tion (and the default processing rule) were provided by Christopher R. Maden
<crism@maden.org> in a message on the DSSSList dated Mon, 02 Apr 2001
22:36:33 -0700, and titled “Re: (dsssl) ”Default” processing rule?”.

〈Define element-children function 18〉 ≡

(define (element-children #!optional (snl (current-node)))

(select-by-class (children snl)

’element))

Macro referenced in scrap 16.

4.3 Implementation Notes

18

Chapter 5

SGML Weave

5.1 Purpose

The “SGMLWeave” program (SGMLWeave.dsl) is a relatively minor customiza-
tion of Norman Walsh’s DSSSL stylesheets for DocBook. In fact, for minimum
functionality, the only necessary change to the stylesheets is the addition of a
processing rule for the <literalchar> element, and that processing rule (shown
in Section 5.3 is relatively simple.

This is in fact a design goal of the DocBook-based literate programming
system, as it exploits the significant efforts of a number of people to develop
tools for DocBook.

5.2 Minimum DocBook Customization Layer

"SGMLWeave.dsl" 19 ≡
<!--

PUBLIC "-//Mark Wroth//DOCUMENT DBLP Weave Print Rules 1.0//EN"

This document is intended to be a minimum DocBook style-sheet

customization layer.

-->

<!DOCTYPE style-sheet

PUBLIC "-//James Clark//DTD DSSSL Style Sheet//EN" [

<!ENTITY dbprint.dsl PUBLIC

"-//Norman Walsh//DOCUMENT DocBook Print Stylesheet//EN"

CDATA DSSSL>

<!ENTITY dbhtml.dsl PUBLIC

"-//Norman Walsh//DOCUMENT DocBook HTML Stylesheet//EN"

CDATA DSSSL>

]>

<style-sheet>

<style-specification id="print" use="dbprint">

<style-specification-body>

19

〈literalchar print processing rule 20a〉
〈programlisting print customizations 20b〉

</style-specification-body>

</style-specification>

<style-specification id="html" use="dbhtml">

<style-specification-body>

〈literalchar print processing rule 20a〉
〈programlisting HTML customizations 25a〉

</style-specification-body>

</style-specification>

<external-specification id="dbprint" document="dbprint.dsl">

<external-specification id="dbhtml" document="dbhtml.dsl">

</style-sheet>

5.3 The literalchar Processing Rules

〈literalchar print processing rule 20a〉 ≡
(element literalchar

(make sequence

(literal (attribute-string "data"))))

Macro referenced in scrap 19.

5.4 The programlisting Customizations

The basis of our customization is the existing <programlisting> code from
[5, dbverb.dsl]. We will modify this by adding information ahead of the basic
element (by identifying the scrap by either the file name or the definition name,
depending on the type of scrap), and adding information after the program
listing (if the scrap is continued).

5.4.1 Print Customizations

Almost everything about the print stylesheets will remain untouched. How-
ever, there are a few changes that need to be made to the processing of the
printlisting element. The printlisting element itself gets some additional
information added to it based on its place in the literate programming web, and
the special use of <xref> means that we should wrap the cross reference text
in some punctuation to indicate that it is a code section reference rather than
actual code.

〈programlisting print customizations 20b〉 ≡

20

〈Customize the programlisting proper 21a〉
〈Customize the (programlisting xref) 22b〉
〈Print auxiliary definitions 23a〉

Macro referenced in scrap 19.

The printlisting Proper

There are essentially two sets of changes we want to make to the processing of
the programlisting element: adding header information identifying the code
section and the particular scrap, and adding continuation information if the
scrap has a continuation.

Mechanically, we do this by wrapping the original code (taken from [5,
dbverb.dsl]) inside a make sequence and adding the code to produce the
header and continuation text before and after the original code.

〈Customize the programlisting proper 21a〉 ≡

(element programlisting (make sequence

〈Provide scrap header information 21b〉
〈Original programlisting print code 23c〉
〈Provide optional continuation info 22a〉))

Macro referenced in scrap 20b.

The scrap header information is straight forward except for the actual title of
the code section. That title is either the file name of the disk file the section
will be written to, or the xreflabel of the section. In either case, the title is
found in the first scrap of the section, which may or may not be the scrap we
are currently processing.

We deal with this as a set of nested if statements to grab the title if we are
in the first scrap of the section, or processing the continuedfrom scrap with a
special mode that recursively hunts back up the linked list until it gets to the
first scrap.1

The other refinement is that we will set the header and continuation infor-
mation in a specific font and size intended to be distinct from the general font
and size used in the document. For ease of reference, these are defined in the
auxiliary information.

〈Provide scrap header information 21b〉 ≡

(make paragraph

(make sequence

font-family-name: scrap-header-font

font-size: scrap-header-size

1It is exactly this application that caused us to define the programlisting scraps as a
doubly-linked list.

21

(literal "\left-pointing-angle-bracket")

(if (attribute-string "file")

(literal (attribute-string "file"))

(if (attribute-string "xreflabel")

(literal (attribute-string "xreflabel"))

(with-mode scrap-title-mode

(make sequence

(process-element-with-id

(attribute-string "continuedfrom"))

(literal " ")))))

(make sequence

font-size: (* scrap-header-size 0.75)

(literal " (ID: ")

(literal (attribute-string "id")))

(literal ")\right-pointing-angle-bracket")

(if (attribute-string "continuedfrom")

(literal "+")

(empty-sosofo))

(literal "\identical-to")))

Macro referenced in scrap 21a.

〈Provide optional continuation info 22a〉 ≡

(if (attribute-string "continuedin")

(make paragraph

font-family-name: scrap-header-font

font-size: scrap-header-size

(make sequence

(literal "Continued in ")

(literal (attribute-string "continuedin"))))

(empty-sosofo))

Macro referenced in scrap 21a.

The printlisting xref Element

The main customization we want for the xref element is to put the cross-
reference text in a running text font, and enclose it in angle brackets. In both
cases, this is to distinguish a code section reference from actual code.

For consistency, we will put the reference in the same font and size as the
scrap header and continuation information.

〈Customize the (programlisting xref) 22b〉 ≡

(element (programlisting xref) (make sequence

font-family-name: scrap-header-font

font-size: scrap-header-size

(literal "\left-pointing-angle-bracket")

〈Original xref print code 24〉

22

(literal "\right-pointing-angle-bracket")

))

Macro referenced in scrap 20b.

Print Auxiliary Definitions

Here we define the common information such as the size and font used for the
header and continuation. Additionally, we define the special mode used to find
the code section title here.

〈Print auxiliary definitions 23a〉 ≡

(define scrap-header-size 8pt)

(define scrap-header-font "Georgia")

〈Define scrap-title-mode 23b〉

Macro referenced in scrap 20b.

The scrap-title-mode is defined to process programlisting elements and
either extract the title (found in the file or xreflabel attributes, or to continue
up the linked list if neither attribute is present.

〈Define scrap-title-mode 23b〉 ≡

(mode scrap-title-mode

(element programlisting

(make sequence

(if (attribute-string "file")

(literal (attribute-string "file"))

(if (attribute-string "xreflabel")

(literal (attribute-string "xreflabel"))

(process-element-with-id

(attribute-string "continuedfrom")))))))

Macro referenced in scraps 23a, 26c.

Original Modular Style Sheet Print Code

This is the complete DSSSL code for the programlisting element, found in
dbverb.dsl.

〈Original programlisting print code 23c〉 ≡

($verbatim-display$

%indent-programlisting-lines%

%number-programlisting-lines%)

Macro referenced in scrap 21a.

23

This is the complete DSSSL code found in dblink.dsl for the xref element. It
is probably much more complex than is actually needed for the rather specialized
use we are making of it, but it is easier to just reproduce it than to try to simplify
it.

〈Original xref print code 24〉 ≡

(let* ((endterm (attribute-string (normalize "endterm")))

(linkend (attribute-string (normalize "linkend")))

(target (element-with-id linkend))

(xreflabel (if (node-list-empty? target)

#f

(attribute-string (normalize "xreflabel") target))))

(if (node-list-empty? target)

(error (string-append "XRef LinkEnd to missing ID ’" linkend "’"))

(if xreflabel

(make link

destination: (node-list-address target)

(literal xreflabel))

(if endterm

(if (node-list-empty? (element-with-id endterm))

(error (string-append "XRef EndTerm to missing ID ’"

endterm "’"))

(make link

destination: (node-list-address (element-with-id endterm))

(with-mode xref-endterm-mode

(process-element-with-id endterm))))

(cond

((or (equal? (gi target) (normalize "biblioentry"))

(equal? (gi target) (normalize "bibliomixed")))

;; xref to the bibliography is a special case

(xref-biblioentry target))

((equal? (gi target) (normalize "co"))

;; callouts are a special case

(xref-callout target))

((equal? (gi target) (normalize "listitem"))

(xref-listitem target))

((equal? (gi target) (normalize "question"))

(xref-question target))

((equal? (gi target) (normalize "answer"))

(xref-answer target))

((equal? (gi target) (normalize "refentry"))

(xref-refentry target))

((equal? (gi target) (normalize "glossentry"))

;; as are glossentrys

(xref-glossentry target))

((equal? (gi target) (normalize "author"))

;; and authors

(xref-author target))

((equal? (gi target) (normalize "authorgroup"))

24

;; and authorgroups

(xref-authorgroup target))

(else

(xref-general target)))))))

Macro referenced in scrap 22b.

5.4.2 HTML Customizations

In the HTML style sheet, we need to make the same kinds of customization we
did with the print style sheet. The details of the actual customizations differ
slightly.

〈programlisting HTML customizations 25a〉 ≡

〈Programlisting element HTML customization 25b〉
〈xref element HTML customization 26b〉
〈HTML auxiliary definitions 26c〉

Macro referenced in scrap 19.

The programlisting Proper

In the programlisting, we make the same kinds of additions (header and con-
tinuation information) as used in the print style sheet.

〈Programlisting element HTML customization 25b〉 ≡

(element programlisting (make sequence

〈Provide HTML scrap header information 25c〉
〈Original programlisting HTML code 27a〉
〈Provide optional HTML scrap continuation info 26a〉

))

Macro referenced in scrap 25a.

The code is also largely common, with some minor changes for the HTML output
and its limited character repertoire.

〈Provide HTML scrap header information 25c〉 ≡

(make element gi: "P"

(make sequence

(literal "<")

(if (attribute-string "file")

(literal (attribute-string "file"))

(if (attribute-string "xreflabel")

(literal (attribute-string "xreflabel"))

(with-mode scrap-title-mode

(make sequence

(process-element-with-id

(attribute-string "continuedfrom"))

25

(literal " ")))))

(make sequence

(literal " (ID: ")

(literal (attribute-string "id")))

(literal ")>")

(if (attribute-string "continuedfrom")

(literal "+")

(empty-sosofo))

(literal "=")))

Macro referenced in scrap 25b.

〈Provide optional HTML scrap continuation info 26a〉 ≡

(if (attribute-string "continuedin")

(make element gi: "P"

(make sequence

(literal "Continued in ")

(literal (attribute-string "continuedin"))))

(empty-sosofo))

Macro referenced in scrap 25b.

Customizing the xref Element

〈xref element HTML customization 26b〉 ≡

(element (programlisting xref) (make sequence

(literal "<")

〈Original xref HTML code 27b〉
(literal ">")

))

Macro referenced in scrap 25a.

HTML Auxiliary Definitions

Here we employ the same basic structure as with the print style sheet, although
there is less to define; this primarily is intended to allow room for future elabo-
ration of the style sheet.

The DSSSL code for the scrap-title-mode is identical with that used in
the print style sheet, so we simply re-use it.

〈HTML auxiliary definitions 26c〉 ≡

〈Define scrap-title-mode 23b〉

Macro referenced in scrap 25a.

26

Original programlisting Code

〈Original programlisting HTML code 27a〉 ≡

($verbatim-display$

%indent-programlisting-lines%

%number-programlisting-lines%)

Macro referenced in scrap 25b.

Original programlisting Code

〈Original xref HTML code 27b〉 ≡

(let* ((endterm (attribute-string (normalize "endterm")))

(linkend (attribute-string (normalize "linkend")))

(target (element-with-id linkend))

(xreflabel (if (node-list-empty? target)

#f

(attribute-string (normalize "xreflabel") target))))

(if (node-list-empty? target)

(error (string-append "XRef LinkEnd to missing ID ’" linkend "’"))

(make element gi: "A"

attributes: (list

(list "HREF" (href-to target)))

(if xreflabel

(literal xreflabel)

(if endterm

(if (node-list-empty? (element-with-id endterm))

(error (string-append

"XRef EndTerm to missing ID ’"

endterm "’"))

(with-mode xref-endterm-mode

(process-node-list (element-with-id endterm))))

(cond

((or (equal? (gi target) (normalize "biblioentry"))

(equal? (gi target) (normalize "bibliomixed")))

;; xref to the bibliography is a special case

(xref-biblioentry target))

((equal? (gi target) (normalize "co"))

;; callouts are a special case

($callout-mark$ target #f))

((equal? (gi target) (normalize "listitem"))

;; listitems are a special case

(if (equal? (gi (parent target)) (normalize "orderedlist"))

(literal (orderedlist-listitem-label-recursive target))

(error (string-append "XRef to LISTITEM only supported in ORDEREDLISTs"))))

((equal? (gi target) (normalize "question"))

;; questions and answers are (yet another) special case

(make sequence

27

(literal (gentext-element-name target))

(literal (gentext-label-title-sep target))

(literal (question-answer-label target))))

((equal? (gi target) (normalize "answer"))

;; questions and answers are (yet another) special case

(make sequence

(literal (gentext-element-name target))

(literal (gentext-label-title-sep target))

(literal (question-answer-label target))))

((equal? (gi target) (normalize "refentry"))

;; so are refentrys

(xref-refentry target))

((equal? (gi target) (normalize "glossentry"))

;; as are glossentrys

(xref-glossentry target))

((equal? (gi target) (normalize "author"))

;; and authors

(xref-author target))

((equal? (gi target) (normalize "authorgroup"))

;; and authorgroups

(xref-authorgroup target))

; this doesn’t really work very well yet

; ((equal? (gi target) (normalize "substeps"))

; ;; and substeps

; (xref-substeps target))

(else

(xref-general target))))))))

Macro referenced in scrap 26b.

28

Chapter 6

Sample Literate Program

6.1 The Sample Document

"sample.sgm" 29 ≡
<!DOCTYPE article

PUBLIC "-//Mark Wroth//DTD DocBook V4.1-Based Extension Literate Programming 1.0//EN">

<article id="sample-lp">

<title>A Sample DocBook-Based Literate Program</title>

<section>

<title>Introduction</title>

<para>This is a sample document illustrating basic use of the

DocBook-based literate programming tool.</para>

<para>This document combines human-readable documentation of

a computer program with the actual computer-readable source

code. Depending on how it is processed, it becomes either

printed (on-line) documentation of the program, or the actual

source submitted to the computer for compilation (or

interpretation, depending on the language).</para>

</section>

<section>

<title>Source Code</title>

<para>The source code is divided into a number of

<quote>scraps</quote>, each containing a discrete fragment of

code. These scraps are assembled into code sections by

concatenating the header scrap with the various continuation

scraps, in an order defined by the programmer. File sections are

written to the file indicated by the programmer, while definition

sections are inserted at a place or places defined by the

programmer. </para>

<para>The first code scrap defines a file output, specifically

to <filename>sample.code</filename>.</para>

29

<programlisting

id="scrap1"

file="sample.code"

continuedin="scrap2"

>

-- This is sample code in an imaginary language

-- Taken from the first scrap

if a &lessthan; b then

<xref linkend="scrap3">

fi

</programlisting>

<para>The next code scrap is a continuation of the first

scrap.</para>

<programlisting

id="scrap2"

continuedfrom="scrap1"

>

-- This is continued code, taken from the second scrap

--

set c = a &ersand; b

greater than: &greaterthan;

</programlisting>

<para>The following code section is an example of a definition

scrap, and will be included in a file output scrap.</para>

<programlisting

id="scrap3"

xreflabel="The Third Scrap"

continuedin="scrap4">

-- Yet more program code from the third scrap

</programlisting>

<para>Finally, we have a continuation scrap continuing

a definition scrap.</para>

<programlisting

id="scrap4"

continuedfrom="scrap3"

>

-- This is scrap 4, which continues scrap 3

-- It should appear where scrap 3 was inserted.

</programlisting>

</section>

</article>

30

Chapter 7

System Performance

Generally speaking, verifying the functionality of the literate programming sys-
tem consists of checking that the tangle branch correctly produces the intended
code, and the weave branch produces appropriate human-readable documen-
tation.

7.1 Sample Code Output

The code output file sample.code produced from the sample document looks
like this:

-- This is sample code in an imaginary language
-- Taken from the first scrap
if a < b then

-- Yet more program code from the third scrap
-- This is scrap 4, which continues scrap 3

-- It should appear where scrap 3 was inserted.

fi
-- This is continued code, taken from the second scrap

--
set c = a & b
greater than: >

This demonstrates the key functions needed in the tangle branch, namely
that:

• Code sections are correctly assembled from the separate scraps identified
in the source code.

• Definition sections are inserted into code sections at the location identified
by the <xref> tag pointing to the head of the definition section.

31

• File output sections are written to disk in with the desired file names.

• Syntactically significant characters (to SGML) including <, >, and &, are
written correctly in the output file.

The handling of whitespace in the code scraps is not quite what I expected,
but appears to be consistent and reasonable. It appears that whitespace is
(correctly) transcribed to the output file, except that an SGML record end
(CR-LF pair, under Windows) following the <programlisting> start tag is not
transcribed to the output.

7.2 Sample Woven Output

The weave DSSSL style sheets produce two sets of human-readable documen-
tation from sample.sgm: sample.rtf and a set of HTML files. The HTML
files are divided and named by the conventions of the HTML Modular DocBook
Style Sheets, which (without customization) produce multiple small files.

In both cases, the weave outputs reasonably produce verbatim program list-
ings, with header and continuation information that matches the actual struc-
ture defined by the sample file.

The typographic treatment of the header and continuation is acceptable,
although the amount of vertical space introduced in both the print and HTML
versions between the header and the body of the programlisting is larger than
I would prefer.

7.3 Evaluation

Overall, these implementations of a DTD, tangle, and weave are functional.
They do not produce really high-quality typographical output, but they do
reasonably display the structure of the code sections. Pending further experience
with the system, this seems to be an acceptable implementation.

32

Acronyms

DSSSL Document Style Semantics Specification Language DSSSL is an ISO
standard defining how to specify transformations from SGML documents
to page-oriented output renderings.

DTD Document Type Definition, Document Type Declaration

HTML Hypertext Markup Language

ISO International Organization for Standardization

OASIS Organization for the Advancement of Structured Information Stan-
dards

OSNL Optional Singleton Node List

SGML Standard Generalized Markup Language

SNL Singleton Node List

XML Extensible Markup Language

33

Bibliography

[1] Carlisle, David. “Re: Issues with literate programming DSSSL Script”, in
DSSSList Digest Vol 3, Number 241 (Thu, 16 Dec 1999 16:27:27 GMT).
<davidc@nag.co.uk>.

[2] Knuth, Donald. Literate Programming. Stanford, CA: Center for the Study
of Language and Information, 1992.

[3] Maden, Christopher R.. “Re: (dsssl) ”Default” processing rule?”, in
DSSSList Digest Vol 4, Number 143 (Mon, 02 Apr 2001 22:36:33 (-0700)).
<crism@maden.org>.

[4] OASIS. DocBook. http://www.oasis-open.org/docbook.

[5] Norman Walsh. The Modular DocBook Stylesheets. http://www.nwalsh.
com/docbook/dsssl/index.html.

34

http://www.oasis-open.org/docbook
http://www.nwalsh.com/docbook/dsssl/index.html
http://www.nwalsh.com/docbook/dsssl/index.html

	Functional Description
	Purpose of the Functional Description
	Project References

	System Summary
	Background
	Literate Programming
	SGML and XML
	DocBook

	Objectives
	Existing Methods and Procedures
	Proposed Methods and Procedures
	Summary of Improvements
	Summary of Impacts
	Assumptions and Constraints

	Detailed Characteristics
	Design Considerations
	System Description
	System Functions
	Flexibility

	Environment
	Equipment Environment
	Support Software Environment

	System Development Plan

	DTD Implementation
	Purpose
	Top Level Organization
	The programlisting Customization
	The `literalchar' element

	SGML Tangle
	Purpose
	Implementation
	Implementation Notes

	SGML Weave
	Purpose
	Minimum DocBook Customization Layer
	The literalchar Processing Rules
	The programlisting Customizations
	Print Customizations
	HTML Customizations

	Sample Literate Program
	The Sample Document

	System Performance
	Sample Code Output
	Sample Woven Output
	Evaluation

