

Department of Civil and Mechanical Engineering United States Military Academy The Nation's First Department of Engineering

CADET: Smart, I.M.

COURSE: CE-300

SECTION: Distance Education Pilot Project

DATE: 10 August 2006.

REQUIREMENT: Problem Set Format Example

Given:

A concrete block has the dimensions shown at right. Two ropes are attached to the hook at Point A, and forces F_1 and F_2 are applied to the ropes as indicated. The density of concrete is $\gamma = 150$ pounds per cubic foot.

Required:

- (a) How much does the block weigh?
- (b) If F₁=1100 lb and F₂=1200 lb, what is the resultant of the two forces?
- (c) If the block is lifted and suspended from the two ropes, what are the magnitudes of the forces F_1 and F_2 ? In other words, what values of F_1 and F_2 are required for the two forces and the weight of the block to be in equilibrium? Assume that the directions of the two forces remain unchanged.

Define Units:

Define kips as a custom unit $kips := 1000 \cdot lbf$

Define Variables:

length of the block $L_b := 42 \cdot in$

height of the block $h_b := 24 \cdot in$

width of the block $w_h := 16 \cdot in$

Force $F_1 := 1100 \cdot lbf$

Force $F_2 = 1200 \cdot lbf$

density of concrete $\gamma \coloneqq 150 \cdot \frac{lbf}{ft^3}$

(a) Calculate the Weight of the Concrete Block

$$W_b := \gamma \cdot L_b \cdot h_b \cdot w_b$$

$$W_b = 1.4 \times 10^3 \, \text{lbf}$$
 $W_b = 1.4 \, \text{kips}$

$$W_b = 1.4 \, \text{kips}$$

(b) Calculate the Resultant Force

Break each force into components

x-component of F_1 $F_{1x} := \frac{4}{5} \cdot F_1$

$$\mathbf{F}_{1\mathbf{x}} := \frac{4}{5} \cdot \mathbf{F}_{1}$$

y-component of F_1 $F_{1y} := \frac{3}{5} \cdot F_1$

$$F_{1y} := \frac{3}{5} \cdot F$$

$$\text{x-component of F}_2 \qquad \operatorname{F}_{2x} \coloneqq \operatorname{F}_2 {\cdot} \cos(30 {\cdot} \text{deg})$$

$$\text{y-component of F}_2 \qquad \mathrm{F}_{2y} \coloneqq \mathrm{F}_2 \cdot \sin(30 \cdot \text{deg})$$

Calculate the resultant

$$F_{Rx} := -F_{1x} + F_{2x}$$

$$F_{Rx} = 159.23 \, lbf$$

y-component of F_R (up is positive)

$$F_{Ry} := F_{1y} + F_{2y}$$

$$F_{Ry} = 1.26 \times 10^3 \, lbf$$

magnitude of resultant

$$F_R := \sqrt{F_{Rx}^2 + F_{Ry}^2}$$

$$F_{R} = 1.27 \times 10^{3} \, lbf$$

direction of resultant

$$\alpha := \text{atan} \! \left(\frac{F_{Ry}}{F_{Rx}} \right)$$

 $\alpha = 82.798 deg$

(c) Calculate Magnitudes of the Forces F₁ and F₂ for Equilibrium

Free Body Diagram:

Equilibrium Equations

guess value for
$$F_2$$
 $F_2 := 1 \cdot lbf$

Given

 $F_1 := 1 \cdot lbf$

$$\Sigma F_x = 0$$
 $-F_1 \cdot \frac{4}{5} + F_2 \cdot \cos(30 \cdot \deg) = 0$ (right is positive)

$$\Sigma F_y = 0$$
(up is positive)
$$F_1 \cdot \frac{3}{5} + F_2 \cdot \sin(30 \cdot \deg) - W_b = 0$$

Find(F₁, F₂) =
$$\begin{pmatrix} 1.318 \times 10^3 \\ 1.218 \times 10^3 \end{pmatrix}$$
 lbf

Final Results:

F₂=1218 lb 2 30 degrees thru A

KEY CHARACTERISTICS OF THIS SAMPLE SOLUTION:

- (1) Use the standard CE-300 Problem Set Heading.
- (2) Always include a brief statement of the problem--what is given, and what is required.
- (3) Define all of your variables and custom units up front, immediately following hte problem statement.

- (4) Use appropriate secton headings to organize your work.
- (5) Use pictures and diagrams to clarify your work whenever possible.
- (6) Provide brief text explanations of key variables and equations.
- (7) Highlight your answers in yellow.

